Archive for the ‘language’ Category

Metrics, Stocks, Shares, and Secure Ledger Accounts for Living Capital: Getting the Information into the Hands of Individual Decision Makers

August 30, 2018

Individual investments in, and returns from, shares of various kinds of human, social, and natural capital stocks will be tracked in secure online accounting ledgers, often referred to generically using the Blockchain brand name. A largely unasked and unanswered question is just what kind of data would best be tracked in secure ledgers. To be meaningful, entries in such accounts will have to stand for something real in the world that is represented in a common language interpretable to anyone capable of reading the relevant signs and symbols. Since we are talking about amounts of things that vary, measurement will unavoidably be a factor.

High quality measurement is essential to the manageability and profitability of investments of all kinds, whether in manufactured capital and property, or in literacy, numeracy, mental and physical health, sociability, and environmental quality (human, social, and natural capital). The measurability and manageability of these intangible factors has achieved significant levels of scientific precision and rigor over the last 90 and more years.

This development is of increasing interest to economists and accountants who have long envisioned ways of reinventing capitalism that do not assume the only alternative is some form of socialism or communism (see references listed below). Many of today’s economic problems may follow from capitalism’s incompleteness. More specifically, we may be suffering from the way in which manufactured capital alone has been been brought to life, economically speaking, while human, social, and natural capital have not (Fisher, 2002, 2007, 2009a/b, 2010a/b, 2011a/b, 2012ab, 2014, etc.).

One in particular who speaks directly to an essential issue that must be addressed in creating an economy of authentic wealth and genuine productivity is Paul Hawken (2007, pp. 21-22), who says that Friedrich Hayek foresaw

“a remedy for the basic expression of the totalitarian impulse: ensuring that information and the right to make decisions are co-located. To achieve this, one can either move the information to the decision makers, or move decision making rights to the information. The movement strives to do both. The earth’s problems are everyone’s problems, and what modern technology and the movement can achieve together is to distribute problem solving tools.”

Hayek (1945, 1948, 1988; Frantz & Leeson, 2013) is well known for his focus on a distinction between a mechanical definition of individuals as uniform and homogenous, and a more vital sense of economic “true individuals” as complex and interdependent. To create efficient markets for the production of authentic wealth, we need to figure out how to extend the “true individuals” of manufactured capital markets into new markets for human, social, and natural capital (Fisher, 2014).

The distributed problem solving tools we need to support the decision making of “true” individuals are secure online ledgers accounting for investments in measured amounts of authentic wealth. Efficient markets are functions of individual processes that create wholes greater than their sums. The multiplier effect that makes this possible depends on transparent communication. Words, including number words, have to mean something specific and distinct. This is where the value of systematic measurement and metrology comes to bear. This is why we need an Intangible Assets Metric System.

For as long as economists have been concerned with markets, philosophers have been pointing out that society is an effect of shared symbol systems. In both cases, economists and philosophers are focused on the fact that it is only when people have a common language that an idea, a meme, can go viral, that a market can seem to have a mind of its own, and science can maintain an ever-increasing pace of technical innovation.

Our aim is to create the information that will populate the entries in the secure ledger accounts people use to track and manage their investments in literacy, numeracy, health, social, and natural capital. These entries will be posted right alongside their existing entries for investments in manufactured capital and property, which includes everything from groceries to autos to electronics to homes.

But the new ledger accounts will be different from today’s in important ways. Many current accounting entries are ultimately written off as costs producing untracked and unaccountable returns. We simply spend the money on groceries or school tuition or a doctor visit. The income is logged, and so are the expenses. We can see that, yes, buying groceries is an investment of a kind, since we profit from it by enjoying the processes of cooking, sharing, and eating tasty food, by avoiding hunger, and by sustaining good health.

Investments are tracked in a different way, though. Money is not just spent and kissed goodbye. Instead, investment funds are loaned to or leased by someone else who is expected to be able to increase the value of those funds. There are often no guarantees of an increase, but the invested value is associated with a proportionate share in the total value of the business. As the business grows or fails, so does the investment.

In much the same way, if we had the information available to us, we could track the returns on the investments we make in food, education, or health care. If we track the impacts of our dietary choices, we would be able to see if and when the investments we make result in healthy outcomes. The information brought to bear will have to include systematic advice relevant to one’s age, sex, pre-existing conditions, genetic propensities, etc. Additional information on the returns on one’s investments in a healthy diet should also be made available, as might be found in the expected income or expenses associated with the consequences of what is eaten, and how much of it. Sometimes there will be room for improvement, for example, if the foods we eat are too sugary or fatty, or if we eat too much. Other times, maintaining a healthy, varied diet may be all that is needed to see a consistent positive return on investment.

Public reports will allow us all to learn from one another. The ability to communicate in a common language and to see what has worked for others will enable everyone to experiment with new ways of doing things. People with common food interests or problems, for instance, will be able quickly evaluate the relevance and benefits of other people’s approaches or solutions. Because of the ways in which communication and community go together, it may be reasonable to hope that new levels of innovation, diversity, tolerance, and respect will follow.

Many aspects of work, education and health care are already undergoing transformations that move their processes out of the usual office, school and hospital environments. These changes will be accelerated as distributed network effects take hold in each of these various markets.

It is easy to see how the Internet of things may evolve to be the medium in which we manage relationships of all kinds, from education and school to health and safety to work and career. Secure ledgers immune from hacking will be essential. And an important health factor will be to know how much relationship management is enough, and when it’s time to get out into the world. That balancing factor will be a key aspect of a successful approach to connecting information on authentic wealth with the individual decision makers growing it and living it.

References

Andriessen, D. (2003). Making sense of intellectual capital: Designing a method for the valuation of intangibles. Oxford, England: Butterworth-Heinemann.

Anielski, M. (2007). The economics of happiness: Building genuine wealth. Gabriola, British Columbia: New Society Publishers.

Cadman, D. (1986). Money as if people mattered. In P. Ekins &  Staff of The Other Economic Summit (Eds.), The living economy: A new economics in the making (pp. 204-210). London: Routledge & Kegan Paul.

Eisler, R. (2007). The real wealth of nations: Creating a caring economics. San Francisco, California: Berrett-Koehler Publishers, Inc.

Ekins, P. (1992). A four-capital model of wealth creation. In P. Ekins & M. Max-Neef (Eds.), Real-life economics: Understanding wealth creation (pp. 147-155). London: Routledge.

Ekins, P. (1999). Economic growth and environmental sustainability: The prospects for green growth. New York: Routledge.

Ekins, P., Dresner, S., & Dahlstrom, K. (2008, March/April). The four-capital method of sustainable development evaluation. European Environment, 18(2), 63-80.

Ekins, P., Hillman, M., & Hutchison, R. (1992). The Gaia atlas of green economics (Foreword by Robert Heilbroner). New York: Anchor Books.

Ekins, P., & Max-Neef, M. A. (Eds.). (1992). Real-life economics: Understanding wealth creation. London: Routledge.

Ekins, P., & Voituriez, T. (2009). Trade, globalization and sustainability impact assessment: A critical look at methods and outcomes. London, England: Earthscan Publications Ltd.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009a, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009b). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (Tech. Rep., http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010a). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital., Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (p. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340674).

Fisher, W. P., Jr. (2010b, 13 January). Reinventing capitalism: Diagramming living capital flows in a green, sustainable, and responsible economy. Retrieved from LivingCapitalMetrics.com: https://livingcapitalmetrics.wordpress.com/2010/01/13/reinventing-capitalism/.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. Journal of Applied Measurement, 12(1), 49-66.

Fisher, W. P., Jr. (2011b). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com. Retrieved 18 January 2011, from Social Science Research Network: http://ssrn.com/abstract=1739386.

Fisher, W. P., Jr. (2012a). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012b, May/June). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2014, Autumn). The central theoretical problem of the social sciences. Rasch Measurement Transactions, 28(2), 1464-1466.

Frantz, R., & Leeson, R. (Eds.). (2013). Hayek and behavioral economics. (Archival Insights Into the Evolution of Economics). New York: Palgrave Macmillan.

Gleeson-White, J. (2015). Six capitals, or can accountants save the planet? Rethinking capitalism for the 21st century. New York: Norton.

Greider, W. (2003). The soul of capitalism: Opening paths to a moral economy. New York: Simon & Schuster.

Griliches, Z. (1994, March). Productivity, R&D, and the data constraint. American Economic Review, 84(1), 1-23.

Grootaert, C. (1998). Social capital: The missing link? (Vol. 3). Social Capital Intiative Working Paper). Washington, D.C.: The World Bank.

Hand, J. R. M., & Lev, B. (Eds.). (2003). Intangible assets: Values, measures, and risks. Oxford Management Readers). Oxford, England: Oxford University Press.

Hart, S. L. (2005). (2007). Capitalism at the crossroads: Aligning business, earth, and humanity (Foreword by Al Gore) (2nd ed.). Wharton School Publishing.

Hawken, P. (1993). The ecology of commerce: A declaration of sustainability. New York: HarperCollins Publishers.

Hawken, P. (2007). Blessed unrest: How the largest movement in the world came into being and why no one saw it coming. New York: Viking Penguin.

Hayek, F. A. (1945, September). The use of knowledge in society. American Economic Review, 35, 519-530. (Rpt. in Individualism and economic order (pp. 77-91). Chicago: University of Chicago Press.)

Hayek, F. A. (1955). The counter revolution of science. Glencoe, Illinois: Free Press.

Hayek, F. A. (1988). The fatal conceit: The errors of socialism (W. W. Bartley, III, Ed.) (Vol. I). The Collected Works of F. A. Hayek. Chicago: University of Chicago Press.

Korten, D. (2009). Agenda for a new economy: From phantom wealth to real wealth. San Francisco: Berret-Koehler Publishing.

Krueger, A. B. (Ed.). (2009). Measuring the subjective well-being of nations: National accounts of time use and well-being. National Bureau of Economic Research Conference Reports). Chicago, Illinois: University of Chicago Press.

Swann, G. M. P. (2001). “No Wealth But Life”: When does conventional wealth create Ruskinian wealth. European Research Studies, 4(3-4), 5-18.

Vemuri, A. W., & Costanza, R. (2006, 10 June). The role of human, social, built, and natural capital in explaining life satisfaction at the country level: Toward a National Well-Being Index. Ecological Economics, 58(1), 119-133.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Advertisements

Revisiting The Federalist Paper No. 31 by Alexander Hamilton: An Analogy from Geometry

July 10, 2018

[John Platt’s chapters on social chain reactions in his 1966 book, The Steps to Man, provoked my initial interest in looking into his work. That work appears to be an independent development of themes that appear in more well-known works by Tarde, Hayek, McLuhan, Latour, and others, which of course are of primary concern in thinking through metrological and ecosystem issues in psychological and social measurement. My interest also comes in the context of Platt’s supervision of Ben Wright in Robert Mulliken’s physics lab at the U of Chicago in 1948. However, other chapters in this book concern deeper issues of complexity and governance that cross yet more disciplinary boundaries. One of the chapters in the book, for instance, examines the Federalist Papers and remarks on a geometric analogy drawn by Alexander Hamilton concerning moral and political forms of knowledge. The parallel with my own thinking is such that I have restated Hamilton’s theme in my own words within the contemporary context. The following is my effort in this regard. No source citations are given, but a list of supporting references is included at bottom. Hamilton’s original text is available at: https://www.congress.gov/resources/display/content/The+Federalist+Papers#TheFederalistPapers-31.  ]

 

Communication requires that we rely on the shared understandings of a common language. Language puts in play combinations of words, concepts, and things that enable us to relate to one another at varying levels of complexity. Often, we need only to convey the facts of a situation in a simple denotative statement about something learned (“the cat is on the mat”). We also need to be able to think at a higher level of conceptual complexity referred to as metalinguistic, where we refer to words themselves and how we learn about what we’ve learned (“the word ‘cat’ has no fur”). At a third, metacommunicative, level of complexity, we make statements about statements, deriving theories of learning and judgments from repeated experiences of metalinguistic learning about learning (“I was joking when I said the cat was on the mat”).

Human reason moves freely between expressions of and representations of denotative facts, metalinguistic instruments like words, and metacommunicative theories. The combination of assurances obtained from the mutual supports each of these provides the others establishes the ground in which the seeds of social, political, and economic life take root and grow. Thought itself emerges from within the way the correspondence of things, words, and concepts precedes and informs the possibility of understanding and communication.

When understanding and communication fail, that failure may come about because of mistaken perceptions concerning the facts, a lack of vocabulary, or misconceptions colored by interests, passions, or prejudices, or some combination of these three.

The maxims of geometry exhibit exactly this same pattern combining concrete data on things in the world, instruments for abstract measurement, and formal theoretical concepts. Geometry is the primary and ancient example of how the beauty of aesthetic proportions teaches us to understand meaning. Contrary to common sense, which finds these kinds of discontinuities incomprehensible, philosophy since the time of Plato’s Symposium teaches how to make meaning in the face of seemingly irreconcilable differences between the local facts of a situation and the principles to which we may feel obliged to adhere. Geometry meaningfully and usefully, for instance, represents the undrawable infinite divisibility of line segments, as with the irrational length of the hypotenuse of a right isosceles triangle that has the other two sides with lengths of 1.

This apparently absurd and counter-intuitive skipping over of the facts in the construction of the triangular figure and the summary reference to the unstateable infinity of the square root of two is so widely accepted as to provide a basis for real estate property rights that are defensible in courts of law and financially fungible. And in this everyday commonplace we have a model for separating and balancing denotative facts, instrumental words, and judicial theories in moral and political domains.

Humanity has proven far less tractable than geometry over the course of its history regarding possible sciences of morals and politics. This is understandable given humanity’s involvement in its own ongoing development. As Freud put it, humanity’s Narcissistic feeling of being the center of the universe, the crown of creation, and the master of its own mind has suffered a series of blows as it has had to come to terms with the works of Copernicus, Darwin, and Freud himself. The struggle to establish a common human identity while also celebrating individual uniqueness is an epic adventure involving billions of tragic and comedic stories of hubris, sacrifice, and accomplishment. Humanity has arrived at a point now, however, at which a certain obstinate, perverse, and disingenuous resistance to self-understanding has gone too far.

Although the mathematical sciences excel in refining the precision of their tools, longstanding but largely untapped resources for improving the meaningfulness and value of moral and political knowledge have been available for decades. “The obscurity is much oftener in the passions and prejudices of the reasoner than in the subject.” Methods for putting passions on the table for sorting out take advantage of the lessons beauty teaches about meaning and thereby support each of the three levels of complexity in communication.

At this point we encounter the special relevance of those three levels of complexity to the separation and balance of powers in government. The concrete denotative factuality of data is the concern of the executive branch, as befits its orientation to matters of practical application. The abstract metalinguistic instrumentation of words is the concern of the legislative branch, in accord with its focus on the enactment of laws and measures. And formal metacommunicative explanatory theories are the concern of the judicial branch, as is appropriate to its focus on constitutional issues.

For each of us to give our own individual understandings fair play in ways that do not give free rein to unfettered prejudices entangled in words and subtle confusions, we need to be able to communicate in terms that, so far as possible, function equally well within and across each of these levels of complexity. It is only to state the obvious to say that we lack the language needed for communication of this kind. Our moral and political sciences have not yet systematically focused on creating such languages. Outside of a few scattered works, they have not even yet consciously hypothesized the possibility of creating these languages. It is nonetheless demonstrably the case that these languages are feasible, viable, and desirable.

Though good will towards all and a desire to refrain so far as possible from overt exclusionary prejudices for or against one or another group cannot always be assumed, these are the conditions necessary for a social contract and are taken as the established basis for what follows. The choice between discourse and violence includes careful attention to avoiding the violence of the premature conclusion. If we are ever to achieve improved communication and a fuller realization of both individual liberties and social progress, the care we invest in supports for life, liberty, and the pursuit of happiness must flow from this deep source.

Given the discontinuities between language’s levels of complexity, avoiding premature conclusions means needing individualized uncertainty estimates and an associated tolerance for departures from expectations set up by established fact-word-concept associations. For example, we cannot allow a three-legged horse to alter our definition of horses as four-legged animals. Neither should we allow a careless error or lucky guess to lead to immediate and unqualified judgments of learning in education. Setting up the context in which individual data points can be understood and explained is the challenge we face. Information infrastructures supporting this kind of contextualization have been in development for years.

To meet the need for new communicative capacities, features of these information infrastructures will have to include individualized behavioral feedback mechanisms, minimal encroachments on private affairs, managability, modifiability, and opportunities for simultaneously enhancing one’s own interests and the greater good.

It is in this latter area that our interests are now especially focused. Our audacious but not implausible goal is to find ways of enhancing communication and the quality of information infrastructures by extending beauty’s lessons for meaning into new areas. In the same way that geometry facilitates leaps from concrete figures to abstract constructions and from there to formal ideals, so, too, must we learn, learn about that learning, and develop theories of learning in other less well materialized areas, such as student-centered education, and patient-centered health care. Doing so will set the stage for new classes of human, social, and natural capital property rights that are just as defensible in courts of law and financially fungible as real estate.

When that language is created, when those rights are assigned, and when that legal defensibility and financial fungibility are obtained, a new construction of government will follow. In it, the separation and balance of executive, legislative, and judicial powers will be applied with equal regularity and precision down to the within-individual micro level, as well as at the between-individual meso level, and at the social macro level. This distribution of freedom and responsibility across levels and domains will feed into new educational, market, health, and governmental institutions of markedly different character than we have at present.

A wide range of research publications appearing over the last several decades documents unfolding developments in this regard, and so those themes will not be repeated here. Some of these publications are listed below for those interested. Far more remains to be done in this area than has yet been accomplished, to say the least.

 

 

Sources consulted or implied

Andrich, D. (2010). Sufficiency and conditional estimation of person parameters in the polytomous Rasch model. Psychometrika, 75(2), 292-308.

Bateson, G. (1972). Steps to an ecology of mind: Collected essays in anthropology, psychiatry, evolution, and epistemology. Chicago: University of Chicago Press.

Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation and Accountability, 21, 5-31.

Black, P., Wilson, M., & Yao, S. (2011). Road maps for learning: A guide to the navigation of learning progressions. Measurement: Interdisciplinary Research & Perspectives, 9, 1-52.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2005, August 1-3). Data standards for living human, social, and natural capital. In Session G: Concluding Discussion, Future Plans, Policy, etc. Conference on Entrepreneurship and Human Rights [http://www.fordham.edu/economics/vinod/ehr05.htm], Pope Auditorium, Lowenstein Bldg, Fordham University.

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009, November 19). Draft legislation on development and adoption of an intangible assets metric system. Retrieved 6 January 2011, from Living Capital Metrics blog: https://livingcapitalmetrics.wordpress.com/2009/11/19/draft-legislation/

Fisher, W. P., Jr. (2009, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement: Concerning Foundational Concepts of Measurement Special Issue Section, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (Tech. Rep. No. http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC:. National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital, Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340674).

Fisher, W. P., Jr. (2010). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics Conference Series, 238(1), 012016.

Fisher, W. P., Jr. (2011). Bringing human, social, and natural capital to life: Practical consequences and opportunities. Journal of Applied Measurement, 12(1), 49-66.

Fisher, W. P., Jr. (2011). Stochastic and historical resonances of the unit in physics and psychometrics. Measurement: Interdisciplinary Research & Perspectives, 9, 46-50.

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012, May/June). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2015). A probabilistic model of the law of supply and demand. Rasch Measurement Transactions, 29(1), 1508-1511  [http://www.rasch.org/rmt/rmt291.pdf].

Fisher, W. P., Jr. (2018). How beauty teaches us to understand meaning. Educational Philosophy and Theory, in review.

Fisher, W. P., Jr. (2018). A nondualist social ethic: Fusing subject and object horizons in measurement. TMQ–Techniques, Methodologies, and Quality, in review.

Fisher, W. P., Jr., Oon, E. P.-T., & Benson, S. (2018). Applying Design Thinking to systemic problems in educational assessment information management. Journal of Physics Conference Series, 1044, 012012.

Fisher, W. P., Jr., Oon, E. P.-T., & Benson, S. (2018). Rethinking the role of educational assessment in classroom communities: How can design thinking address the problems of coherence and complexity? Measurement, in review.

Fisher, W. P., Jr., & Stenner, A. J. (2013). On the potential for improved measurement in the human and social sciences. In Q. Zhang & H. Yang (Eds.), Pacific Rim Objective Measurement Symposium 2012 Conference Proceedings (pp. 1-11). Berlin, Germany: Springer-Verlag.

Fisher, W. P., Jr., & Stenner, A. J. (2016). Theory-based metrological traceability in education: A reading measurement network. Measurement, 92, 489-496.

Fisher, W. P., Jr., & Stenner, A. J. (2018). Ecologizing vs modernizing in measurement and metrology. Journal of Physics Conference Series, 1044, 012025.

Gadamer, H.-G. (1980). Dialogue and dialectic: Eight hermeneutical studies on Plato (P. C. Smith, Trans.). New Haven: Yale University Press.

Gari, S. R., Newton, A., Icely, J. D., & Delgado-Serrano, M. D. M. (2017). An analysis of the global applicability of Ostrom’s design principles to diagnose the functionality of common-pool resource institutions. Sustainability, 9(7), 1287.

Gelven, M. (1984). Eros and projection: Plato and Heidegger. In R. W. Shahan & J. N. Mohanty (Eds.), Thinking about Being: Aspects of Heidegger’s thought (pp. 125-136). Norman, Oklahoma: Oklahoma University Press.

Hamilton, A. (. (1788, 1 January). Concerning the general power of taxation (continued). The New York Packet. (Rpt. in J. E. Cooke, (Ed.). (1961). The Federalist (Hamilton, Alexander; Madison, James; Jay, John). (pp. No. 31, 193-198). Middletown, Conn: Wesleyan University Press.

Lunz, M. E., Bergstrom, B. A., & Gershon, R. C. (1994). Computer adaptive testing. International Journal of Educational Research, 21(6), 623-634.

Ostrom, E. (2015). Governing the commons: The evolution of institutions for collective action. Cambridge, UK: Cambridge University Press (Original work published 1990).

Pendrill, L., & Fisher, W. P., Jr. (2015). Counting and quantification: Comparing psychometric and metrological perspectives on visual perceptions of number. Measurement, 71, 46-55.

Penuel, W. R. (2015, 22 September). Infrastructuring as a practice for promoting transformation and equity in design-based implementation research. In Keynote. International Society for Design and Development in Education (ISDDE) 2015 Conference, Boulder, CO. Retrieved from http://learndbir.org/resources/ISDDE-Keynote-091815.pdf

Platt, J. R. (1966). The step to man. New York: John Wiley & Sons.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Ricoeur, P. (1966). The project of a social ethic. In D. Stewart & J. Bien, (Eds.). (1974). Political and social essays (pp. 160-175). Athens, Ohio: Ohio University Press.

Ricoeur, P. (1970). Freud and philosophy: An essay on interpretation. Evanston, IL: Northwestern University Press.

Ricoeur, P. (1974). Violence and language. In D. Stewart & J. Bien (Eds.), Political and social essays by Paul Ricoeur (pp. 88-101). Athens, Ohio: Ohio University Press.

Ricoeur, P. (1977). The rule of metaphor: Multi-disciplinary studies of the creation of meaning in language (R. Czerny, Trans.). Toronto: University of Toronto Press.

Star, S. L., & Ruhleder, K. (1996, March). Steps toward an ecology of infrastructure: Design and access for large information spaces. Information Systems Research, 7(1), 111-134.

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Wright, B. D. (1958, 7). On behalf of a personal approach to learning. The Elementary School Journal, 58, 365-375. (Rpt. in M. Wilson & W. P. Fisher, Jr., (Eds.). (2017). Psychological and social measurement: The career and contributions of Benjamin D. Wright (pp. 221-232). New York: Springer Nature.)

Wright, B. D. (1999). Fundamental measurement for psychology. In S. E. Embretson & S. L. Hershberger (Eds.), The new rules of measurement: What every educator and psychologist should know (pp. 65-104 [http://www.rasch.org/memo64.htm]). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.