Posts Tagged ‘creativity’

Making sustainability impacts universally identifiable, individually owned, efficiently exchanged, and profitable

February 2, 2019

Sustainability impacts plainly and obviously lack common product definitions, objective measures, efficient markets, and associated capacities for competing on improved quality. The absence of these landmarks in the domain of sustainability interests is a result of inattention and cultural biases far more than it is a result of the inherent characteristics or nature of sustainability itself. Given the economic importance of these kinds of capacities and the urgent need for new innovations supporting sustainable development, it is curious how even those most stridently advocating new ways of thinking seem to systematically ignore well-established opportunities for advancing their cause. The wealth of historical examples of rapidly emerging, transformative, disruptive, and highly profitable innovations would seem to motivate massive interest in how extend those successes in new directions.

Economists have long noted how common currencies reduce transaction costs, support property rights, and promote market efficiencies (for references and more information, see previous entries in this blog over the last ten years and more). Language itself is well known for functioning as an economical labor-saving device in the way that useful concepts representing things in the world as words need not be re-invented by everyone for themselves, but can simply be copied. In the same ways that common languages ease communication, and common currencies facilitate trade, so, too, do standards for common product definitions contribute to the creation of markets.

Metrologically traceable measurements make it possible for everyone everywhere to know how much of something in particular there is. This is important, first of all, because things have to be identifiable in shared ways if we are to be able to include them in our lives, socially. Anyone interested in obtaining or producing that kind of thing has to be able to know it and share information about it as something in particular. Common languages capable of communicating specifically what a thing is, and how much of it there is, support claims to ownership and to the fruits of investments in entrepreneurial innovations.

Technologies for precision measurement key to these communications are one of the primary products of science. Instruments measuring in SI units embody common currencies for the exchange of scientific capital. The calibration and distribution of such instruments in the domain of sustainability impact investing and innovation ought to be a top-level priority. How else will sustainable impacts be made universally identifiable, individually owned, efficiently exchanged, and profitable?

The electronics, computer, and telecommunications industries provide ample evidence of precision measurement’s role in reducing transaction costs, establishing common product definitions, and reaping huge profits. The music industry’s use of these technologies combines the science and economics of precision measurement with the artistic creativity of intensive improvisations constructed from instruments tuned to standardized scales that achieve wholly unique levels of individual innovation.

Much stands to be learned, and even more to be gained, in focusing sustainability development on ways in which we can harness the economic power of the profit motive by combining collective efforts with individual imaginations in the domains of human, social, and natural capital. Aligning financial, monetary wealth with the authentic wealth and genuine productivity of gains in human, community, and environmental value ought to be the defining mission of this generation. The time to act is now.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Advertisements

New Ideas on How to Realize the Purpose of Capital

September 20, 2018

I’d like to offer the following in reply to James Militzer, at https://nextbillion.net/deciphering-emersons-tears-time-impact-investing-lower-expectations/.

Rapid advances toward impact investing’s highest goals of social transformation are underway in quiet technical work being done in places no one is looking. That work shares Jed Emerson’s sentiments expressed at the 2017 Social Capital Markets conference, as he is quoted in Militzer’s NextBillion.net posting, that “The purpose of capital is to advance a more progressively free and just experience of life for all.” And he is correct in what Militzer reported he said the year before, that we need a “real, profound critique of current practices within financial capitalism,” one that would “require real change in our own behavior aside from adding a few funds to our portfolios here or augmenting a reporting process there.”

But the efforts he and others are making toward fulfilling that purpose and articulating that critique are incomplete, insufficient, and inadequate. Why? How? Language is the crux of the matter, and the issues involved are complex and technical. The challenge, which may initially seem simplistic or naive, is how to bring human, social, and environmental values into words. Not just any words, but meaningful words in a common language. What is most challenging is that this language, like any everyday language, has to span the range from abstract theoretical ideals to concrete local improvisations.

That means it cannot be like our current languages for expressing human, social, and environmental value. If we are going to succeed in aligning those forms of value with financial value, we have a lot of work to do.

Though there is endless talk of metrics for managing sustainable impacts, and though the importance of these metrics for making sustainability manageable is also a topic of infinite discussion, almost no one takes the trouble to seek out and implement the state of the art in measurement science. This is a crucial way, perhaps the most essential way, in which we need to criticize current practices within financial capitalism and change our behaviors. Oddly, almost no one seems to have thought of that.

That is, one of the most universally unexamined assumptions of our culture is that numbers automatically stand for quantities. People who analyze numeric data are called quants, and all numeric data analysis is referred to as quantitative. That is the case, but almost none of these quants and quantitative methods involve actually defining, modeling, identifying, evaluating, or applying an substantive unit of something real in the world that can be meaningfully represented by numbers.

There is, of course, an extensive and longstanding literature on exactly this science of measurement. It has been a topic of research, philosophy, and practical applications for at least 90 years, going back to the work of Thurstone at the University of Chicago in the 1920s. That work continued at the University of Chicago with Rasch’s visit there in 1960, with Wright’s adoption and expansion of Rasch’s theory and methods, and with the further work done by Wright’s students and colleagues in the years since.

Most importantly, over the last ten years, metrologists, the physicists and engineers who maintain and improve the SI units, the metric system, have taken note of what’s been going on in research and practice involving the approaches to measurement developed by Rasch, Wright, and their students and colleagues (for just two of many articles in this area, see here and here). The most recent developments in this new metrology include

(a) initiatives at national metrology institutes globally (Sweden and the UK, Portugal, Ukraine, among others) to investigate potentials for a new class of unit standards;

(b) a special session on this topic at the International Measurement Confederation (IMEKO) World Congress in Belfast on 5 September 2018;

(c) the Journal of Physics Conference Series proceedings of the 2016 IMEKO Joint Symposium hosted by Mark Wilson and myself at UC Berkeley;

(d) the publication of a 2017 book on Ben Wright edited by Mark Wilson and myself in Springer’s Series on Measurement Science and Technology; and

(e) the forthcoming October 2018 special issue of Elsevier’s Measurement journal edited by Wilson and myself, and a second one currently in development.

There are profound differences between today’s assumptions about measurement and how a meaningful art and science of precision measurement proceeds. What passes for measurement in today’s sustainability economics and accounting are counts, percentages, and ratings. These merely numeric metrics do not stand for anything that adds up the way they do. In fact, it’s been repeatedly demonstrated over many years that these kinds of metrics measure in a unit that changes size depending on who or what is measured, who is measuring, and what tool is used to measure. What makes matters even worse is that the numbers are usually taken to be perfectly precise, as uncertainty ranges, error terms, and confidence intervals are only sporadically provided and are usually omitted.

Measurement is not primarily a matter of data analysis. Measurement requires calibrated instruments that can be read as standing for a given amount of something that stays the same, within the uncertainty range, no matter who is measuring, no matter what or who is measured, and no matter what tool is used. This is, of course, quite an accomplishment when it can be achieved, but it is not impossible and has been put to use in large scale practical ways for several decades (for instance, see here, here, and here). Universally accessible instruments calibrated to common unit standards are what make society in general, and markets in particular, efficient in the way of projecting distributed network effects, turning communities into massively parallel stochastic computers (as W. Brian Arthur put it on p. 6 of his 2014 book, Complexity Economics).

These are not unexamined assumptions or overly ideal theoretical demands. They are pragmatic ways of adapting to emergent patterns in various kinds of data that have repeatedly been showing themselves around the world for decades. Our task is to literally capitalize on these nonhuman forms of life by creating multilevel, complex ecosystems of relationships with them, letting them be what they are in ways that also let us represent ourselves to each other. (Emerson quotes Bruno Latour to this effect on page 136 in his new book, The Purpose of Capital; those familiar with my work will know I’ve been reading and citing Latour since the early 1980s).

So it seems to me that, however well-intentioned those promoting impact investing may be, there is little awareness of just how profound and sweeping the critique of current practices needs to be, or of just how much our own behaviors are going to have to change. There are, however, truly significant reasons to be optimistic and hopeful. The technical work being done in measurement and metrology points toward possibilities for extending everyday language into a pragmatic idealism that does not require caving in to either varying local circumstances or to authoritarian dictates.

The upside of the situation is that, as so often happens in the course of human history, this critique and the associated changes are likely to have that peculiar quality captured in the French expression, “plus ça change, plus c’est la même chose” (the more things change, the more they stay the same). The changes in process are transformative, but will also be recognizable repetitions of human scale patterns.

In sum, what we are doing is tuning the instruments of the human, social, and environmental sciences to better harmonize relationships. Just as jazz, folk, and world music show that creative improvisation is not constrained by–but is facilitated by–tuning standards and high tech solutions, so, too, can we make that the case in other areas.

For instance, in my presentation at the IMEKO World Congress in Belfast on 5 September, I showed that the integration of beauty and meaning we have within our grasp reiterates principles that date back to Plato. The aesthetics complement the mathematics, with variations on the same equations being traceable from the Pythagorean theorem to Newton’s laws to Rasch’s models for measurement (see, for instance, Fisher & Stenner, 2013). In many ways, the history of science and philosophy continues to be a footnote to Plato.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

 

Self-Sustaining Sustainability

August 6, 2018

After decades of efforts and massive resources expended in trying to create a self-sustaining sustainable economy, perhaps it is time to wonder if we are going about it the wrong way. There seems to be truly significant and widespread desire for change, but the often inspiring volumes of investments and ingenuity applied to the problem persistently prove insufficient to the task. Why?

I’ve previously and repeatedly explained how finding the will to change is not the issue. This time I’ll approach my proposed solution in a different way.

Q: How do we create a self-sustaining sustainable economy?

A: By making sustainability profitable in monetary terms as well as in the substantive real terms of the relationships we live out with each other and the earth. Current efforts in this regard focus solely on reducing energy costs enough to compensate for investments in advancing the organizational mission. We need far more comprehensively designed solutions than that.

Q: How do we do that?

A: By financially rewarding improved sustainability at every level of innovation, from the individual to the community to the firm.

Q: How do we do that?

A: By instituting rights to the ownership of human, social, and natural capital properties, and by matching the demand for sustainability with the supply of it in a way that will inform arbitrage and pricing.

Q: How do we do that?

A: By lowering the cost of the information needed to be able to know how many shares of human, social, and natural capital stocks are owned, and to match demand with supply.

Q: How could that be done?

A: By investing as a society in improving the quality and distribution of the available information.

Q: What does that take?

A: Creating dependable and meaningful tools for ascertaining the quantity, quality, and type of sustainability impacts on human, social, and natural capital being offered.

Q: Can that be done?

A: The technical art and science of measurement needed for creating these tools is well established, having been in development for almost 100 years.

Q: How do we start?

A: An important lesson of history is that building the infrastructure and its array of applications follows in the wake of, and cannot precede, the institution of the constitutional ideals. We must know what the infrastructure and applications will look like in their general features, but nothing will ever be done if we think we have to have them in place before instantiating the general frame of reference. The most general right to own legal title to human, social, and natural capital can be instituted, and the legal status of new metric system units can be established, before efforts are put into unit standards, traceability processes, protocols for intralaboratory ruggedness tests and interlaboratory round robin trials, conformity assessments, etc.

Q: It sounds like an iterative process.

A: Yes, one that must attend from the start to the fundamental issues of information coherence and complexity, as is laid out in my recent work with Emily Oon, Spencer Benson, Jack Stenner, and others.

Q: This sounds highly technical, utilitarian, and efficient. But all the talk of infrastructure, standards, science, and laboratories sounds excessively technological. Is there any place in this scheme for ecological values, ethics, and aesthetics? And how are risk and uncertainty dealt with?

A: We can take up each of these in turn.

Ecological values: To use an organic metaphor, we know the DNA of the various human, social, and natural capital forms of life, or species, and we know their reproductive and life cycles, and their ecosystem requirements. What we have not done is to partner with each of these species in relationships that focus on maximizing the quality of their habitats, their maturation, and the growth of their populations. Social, psychological, and environmental relationships are best conceived as ecosystems of mutual interdependencies. Being able to separate and balance within-individual, between-individual, and collective levels of complexity in these interdependencies will be essential to the kinds of steward leadership needed for creating and maintaining new sociocognitive ecosystems. Our goal here is to become the change we want to institute, since caterpillar to butterfly metamorphoses come about only via transformations from within.

Ethics: The motivating intention is to care simultaneously and equally effectively for both individual uniqueness and global humanity. In accord with the most fundamental ethical decision, we choose discourse over violence, and we do so by taking language as the model for how things come into words. Language is itself alive in the sense of the collective processes by which new meanings come into it. Language moreover has the remarkable capacity of supporting local concrete improvisations and creativity at the same time that it provides navigable continuity and formal ideals. Care for the unity and sameness of meaning demands a combination of rigorous conceptual determinations embodied in well-defined words with practical applications of those words in local improvisations. That is how we support the need to make decisions with inevitably incomplete and inconsistent information while not committing the violence of the premature conclusion. The challenge is one of finding a balance between openness and boundaries that allows language and our organizational cultures to be stable while also evolving. Our technical grasp of complex adaptive systems, autopoiesis, and stochastic measurement information models is advanced enough to meet these ethical requirements of caring for ourselves, each other, and the earth.

Aesthetics: An aesthetic desire for and love of beauty roots the various forms of life inhabiting diverse niches in the proposed knowledge ecosystem and information infrastructure, and does so in the ground of the ethical choice of discourse and meaning over violence. The experience of beauty teaches us how to understand meaning. The attraction to beauty is a unique human phenomenon because it combines apparent opposites into a single complex feeling. Even when the object of desire is possessed as fully as possible, desire is not eliminated, and even when one feels the object of desire to be lost or completely out of touch, its presence and reality is still felt. So, too, with meaning: no actual instance of anything in the world ever embodies the fullness of an abstract conceptual ideal. This lesson of beauty is perhaps most plainly conveyed in music, where artists deliberately violate the standards of instrument tuning to create fascinating and absorbing combinations of harmony and dissonance from endlessly diverse ensembles. Some tunings persist beyond specific compositions to become immediately identifiable trademark sounds. In taking language as a model, the aesthetic combination of desire and possession informs the ethics of care for the unity and sameness of meaning, and vice versa. And ecological values, ethics, and aesthetics stand on par with the technical concerns of calibration and measurement.

Risk and uncertainty: Calibrating a tool relative to a unit standard is by itself already a big step toward reducing uncertainty and risk. Instead of the chaos of dozens of disconnected sustainability indicators, or the cacophony of hundreds or thousands of different tests, assessments, or surveys measuring the same things, we will have data and theory supporting interpretation of reproducible patterns. These patterns will be, and in many cases already are, embodied in instruments that further reduce risk by defining an invariant unit of comparison, simplifying interpretation, reducing opportunities for mistakes, by quantifying uncertainty, and by qualifying it in terms of the anomalous exceptions that depart from expectations. Each of these is a special feature of rigorously defined measurement that will eventually become the expected norm for information on sustainability.

For more on these themes, see my other blog posts here, my various publications, and my SSRN page.

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Convergence, Divergence, and the Continuum of Field-Organizing Activities

March 29, 2014

So what are the possibilities for growing out green shoots from the seeds and roots of an ethical orientation to keeping the dialogue going? What kinds of fruits might be expected from cultivating a common ground for choosing discourse over violence? What are the consequences for practice of planting this seed in this ground?

The same participant in the conversation earlier this week at Convergence XV who spoke of the peace building processes taking place around the world also described a developmental context for these issues of mutual understanding. The work of Theo Dawson and her colleagues (Dawson, 2002a, 2002b, 2004; Dawson, Fischer, and Stein, 2006) is especially pertinent here. Their comparisons of multiple approaches to cognitive and moral development have provided clear and decisive theory, evidence, and instrumentation concerning the conceptual integrations that take place in the evolution of hierarchical complexity.

Conceptual integrations occur when previously tacit, unexamined, and assumed principles informing a sphere of operations are brought into conscious awareness and are transformed into explicit objects of new operations. Developmentally, this is the process of discovery that takes place from the earliest stages of life, in utero. Organisms of all kinds mature in a process of interaction with their environments. Young children at the “terrible two” stage, for instance, are realizing that anything they can detach from, whether by throwing or by denying (“No!”), is not part of them. Only a few months earlier, the same children will have been fascinated with their fingers and toes, realizing these are parts of their own bodies, often by putting them in their mouths.

There are as many opportunities for conceptual integrations between the ages of 21 to 99 as there are between birth and 21. Developmental differences in perspectives can make for riotously comic situations, and can also lead to conflicts, even when the participants agree on more than they disagree on. And so here we arrive at a position from which we can get a grip on how to integrate convergence and divergence in a common framework that follows from the prior post’s brief description of the ontological method’s three moments of reduction, application, and deconstruction.

Image

Woolley and colleagues (Woolley, et al., 2010; Woolley and Fuchs, 2011) describe a continuum of five field-organizing activities categorizing the types of information needed for effective collective intelligence (Figure 1). Four of these five activities (defining, bounding, opening, and bridging) vary in the convergent versus divergent processes they bring to bear in collective thinking. Defining and bounding are convergent processes that inform judgment and decision making. These activities are especially important in the emergence of a new field or organization, when the object of interest and the methods of recognizing and producing it are in contention. Opening and bridging activities, in contrast, diverge from accepted definitions and transgress boundaries in the creative process of pushing into new areas. Undergirding the continuum as a whole is the fifth activity, grounding, which serves as a theory- and evidence-informed connection to meaningful and useful results.

There are instances in which defining and bounding activities have progressed to the point that the explanatory power of theory enables the calibration of test items from knowledge of the component parts included in those items. The efficiencies and cost reductions gained from computer-based item generation and administration are significant. Research in this area takes a variety of approaches; for more information, see Daniel and Embretson (2010), DeBoeck and Wilson (2004), Stenner, et al. (2013), and others.

The value of clear definitions and boundaries in this context stems in large part from the capacity to identify exceptions that prove (test) the rules, and that then also provide opportunities for opening and bridging. Kuhn (1961, p. 180; 1977, p. 205) noted that

To the extent that measurement and quantitative technique play an especially significant role in scientific discovery, they do so precisely because, by displaying significant anomaly, they tell scientists when and where to look for a new qualitative phenomenon.

Rasch (1960, p. 124) similarly understood that “Once a law has been established within a certain field then the law itself may serve as a tool for deciding whether or not added stimuli and/or objects belong to the original group.” Rasch gives the example of mechanical force applied to various masses with resulting accelerations, introducing idea that one of the instruments might exert magnetic as well as mechanical force, with noticeable effects on steel masses, but not on wooden masses. Rasch suggests that exploration of these anomalies may result in the discovery of other similar instruments that vary in the extent to which they also exert the new force, with the possible consequence of discovering a law of magnetic attraction.

There has been an intense interest in the assessment of divergent inconsistencies in measurement research and practice following in the wake of Rasch’s early work in psychological and social measurement (examples from a very large literature in this area include Karabatsos and Ulrich, 2002, and Smith and Plackner, 2009). Andrich, for instance, makes explicit reference to Kuhn (1961), saying, “…the function of a model for measurement…is to disclose anomalies, not merely to describe data” (Andrich, 2002, p. 352; also see Andrich, 1996, 2004, 2011). Typical software for applying Rasch models (Andrich, et al., 2013; Linacre, 2011, 2013; Wu, et al., 2007) thus accordingly provides many more qualitative numbers evaluating potential anomalies than quantitative measuring numbers. These qualitative numbers (digits that do not stand for something substantive that adds up in a constant unit) include uncertainty and confidence indicators that vary with sample size; mean square and standardized model fit statistics; and principal components analysis factor loadings and eigenvalues.

The opportunities for divergent openings onto new qualitative phenomena provided by data consistency evaluations are complemented in Rasch measurement by a variety of bridging activities. Different instruments intended to measure the same or closely related constructs may often be equated or co-calibrated, so they measure in a common unit (among many publications in this area, see Dawson, 2002a, 2004; Fisher, 1997; Fisher, et al., 1995; Massof and Ahmadian, 2007; Smith and Taylor, 2004). Similarly, the same instrument calibrated on different samples from the same population may exhibit consistent properties across those samples, offering further evidence of a potential for defining a common unit (Fisher, 1999).

Other opening and bridging activities include capacities (a) to drop items or questions from a test or survey, or to add them; (b) to adaptively administer subsets of custom-selected items from a large bank; and (c) to adjust measures for the leniency or severity of judges assigning ratings, all of which can be done, within the limits of the relevant definitions and boundaries, without compromising the unit of comparison. For methodological overviews, see Bond and Fox (2007), Wilson (2005), and others.

The various field-organizing activities spanning the range from convergence to divergence are implicated not only in research on collective thinking, but also in the history and philosophy of science. Galison and colleagues (Galison, 1997, 1999; Galison and Stump, 1996) closely examine positivist and antipositivist perspectives on the unity of science, finding their conclusions inconsistent with the evidence of history. A postpositivist perspective (Galison, 1999, p. 138), in contrast, finds “distinct communities and incommensurable beliefs” between and often within the areas of theory, experiment, and instrument-making. But instead of finding these communities “utterly condemned to passing one another without any possibility of significant interaction,” Galison (1999, p. 138) observes that “two groups can agree on rules of exchange even if they ascribe utterly different significance to the objects being exchanged; they may even disagree on the meaning of the exchange process itself.” In practice, “trading partners can hammer out a local coordination despite vast global differences.”

In accord with Woolley and colleagues’ work on convergent and divergent field-organizing activities, Galison (1999, p. 137) concludes, then, that “science is disunified, and—against our first intuitions—it is precisely the disunification of science that underpins its strength and stability.” Galison (1997, pp. 843-844) concludes with a section entitled “Cables, Bricks, and Metaphysics” in which the postpositivist disunity of science is seen to provide its unexpected coherence from the simultaneously convergent and divergent ways theories, experiments, and instruments interact.

But as Galison recognizes, a metaphor based on the intertwined strands in a cable is too mechanical to support the dynamic processes by which order arises from particular kinds of noise and chaos. Not cited by Galison is a burgeoning literature on the phenomenon of noise-induced order termed stochastic resonance (Andò  and Graziani 2000, Benzi, et al., 1981; Dykman and McClintock, 1998; Fisher, 1992, 2011; Hess and Albano, 1998; Repperger and Farris, 2010). Where the metaphor of a cable’s strands breaks down, stochastic resonance provides multiple ways of illustrating how the disorder of finite and partially independent processes can give rise to an otherwise inaccessible order and structure.

Stochastic resonance involves small noisy signals that can be amplified to have very large effects. The noise has to be of a particular kind, and too much of it will drown out rather than amplify the effect. Examples include the interaction of neuronal ensembles in the brain (Chialvo, Lontin, and Müller-Gerking, 1996), speech recognition (Moskowitz and Dickinson, 2002), and perceptual interpretation (Rianni and Simonotto, 1994). Given that Rasch’s models for measurement are stochastic versions of Guttman’s deterministic models (Andrich, 1985), the question has been raised as to how Rasch’s seemingly weaker assumptions could lead to a measurement model that is stronger than Guttman’s (Duncan, 1984, p. 220). Stochastic resonance may provide an essential clue to this puzzle (Fisher, 1992, 2011).

Another description of what might be a manifestation of stochastic resonance akin to that brought up by Galison arises in Berg and Timmermans’ (2000, p. 56) study of the constitution of universalities in a medical network. They note that, “Paradoxically, then, the increased stability and reach of this network was not due to more (precise) instructions: the protocol’s logistics could thrive only by parasitically drawing upon its own disorder.” Much the same has been said about the behaviors of markets (Mandelbrot, 2004), bringing us back to the topic of the day at Convergence XV earlier this week. I’ll have more to say on this issue of universalities constituted via noise-induced order in due course.

References

Andò, B., & Graziani, S. (2000). Stochastic resonance theory and applications. New York: Kluwer Academic Publishers.

Andrich, D. (1985). An elaboration of Guttman scaling with Rasch models for measurement. In N. B. Tuma (Ed.), Sociological methodology 1985 (pp. 33-80). San Francisco, California: Jossey-Bass.

Andrich, D. (1996). Measurement criteria for choosing among models with graded responses. In A. von Eye & C. Clogg (Eds.), Categorical variables in developmental research: Methods of analysis (pp. 3-35). New York: Academic Press, Inc.

Andrich, D. (2002). Understanding resistance to the data-model relationship in Rasch’s paradigm: A reflection for the next generation. Journal of Applied Measurement, 3(3), 325-359.

Andrich, D. (2004, January). Controversy and the Rasch model: A characteristic of incompatible paradigms? Medical Care, 42(1), I-7–I-16.

Andrich, D. (2011). Rating scales and Rasch measurement. Expert Reviews in Pharmacoeconomics Outcome Research, 11(5), 571-585.

Andrich, D., Lyne, A., Sheridan, B., & Luo, G. (2013). RUMM 2030: Rasch unidimensional models for measurement. Perth, Australia: RUMM Laboratory Pty Ltd [www.rummlab.com.au].

Benzi, R., Sutera, A., & Vulpiani, A. (1981). The mechanism of stochastic resonance. Journal of Physics. A. Mathematical and General, 14, L453-L457.

Berg, M., & Timmermans, S. (2000). Order and their others: On the constitution of universalities in medical work. Configurations, 8(1), 31-61.

Bond, T., & Fox, C. (2007). Applying the Rasch model: Fundamental measurement in the human sciences, 2d edition. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Chialvo, D., Longtin, A., & Müller-Gerking, J. (1996). Stochastic resonance in models of neuronal ensembles revisited [Electronic version].

Daniel, R. C., & Embretson, S. E. (2010). Designing cognitive complexity in mathematical problem-solving items. Applied Psychological Measurement, 34(5), 348-364.

Dawson, T. L. (2002a, Summer). A comparison of three developmental stage scoring systems. Journal of Applied Measurement, 3(2), 146-89.

Dawson, T. L. (2002b, March). New tools, new insights: Kohlberg’s moral reasoning stages revisited. International Journal of Behavioral Development, 26(2), 154-66.

Dawson, T. L. (2004, April). Assessing intellectual development: Three approaches, one sequence. Journal of Adult Development, 11(2), 71-85.

Dawson, T. L., Fischer, K. W., & Stein, Z. (2006). Reconsidering qualitative and quantitative research approaches: A cognitive developmental perspective. New Ideas in Psychology, 24, 229-239.

De Boeck, P., & Wilson, M. (Eds.). (2004). Explanatory item response models: A generalized linear and nonlinear approach. Statistics for Social and Behavioral Sciences). New York: Springer-Verlag.

Duncan, O. D. (1984). Notes on social measurement: Historical and critical. New York: Russell Sage Foundation.

Dykman, M. I., & McClintock, P. V. E. (1998, January 22). What can stochastic resonance do? Nature, 391(6665), 344.

Fisher, W. P., Jr. (1992, Spring). Stochastic resonance and Rasch measurement. Rasch Measurement Transactions, 5(4), 186-187 [http://www.rasch.org/rmt/rmt54k.htm].

Fisher, W. P., Jr. (1997). Physical disability construct convergence across instruments: Towards a universal metric. Journal of Outcome Measurement, 1(2), 87-113.

Fisher, W. P., Jr. (1999). Foundations for health status metrology: The stability of MOS SF-36 PF-10 calibrations across samples. Journal of the Louisiana State Medical Society, 151(11), 566-578.

Fisher, W. P., Jr. (2011). Stochastic and historical resonances of the unit in physics and psychometrics. Measurement: Interdisciplinary Research & Perspectives, 9, 46-50.

Fisher, W. P., Jr., Harvey, R. F., Taylor, P., Kilgore, K. M., & Kelly, C. K. (1995, February). Rehabits: A common language of functional assessment. Archives of Physical Medicine and Rehabilitation, 76(2), 113-122.

Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.

Galison, P. (1999). Trading zone: Coordinating action and belief. In M. Biagioli (Ed.), The science studies reader (pp. 137-160). New York: Routledge.

Galison, P., & Stump, D. J. (1996). The disunity of science: Boundaries, contexts, and power. Palo Alto, California: Stanford University Press.

Hess, S. M., & Albano, A. M. (1998, February). Minimum requirements for stochastic resonance in threshold systems. International Journal of Bifurcation and Chaos, 8(2), 395-400.

Karabatsos, G., & Ullrich, J. R. (2002). Enumerating and testing conjoint measurement models. Mathematical Social Sciences, 43, 487-505.

Kuhn, T. S. (1961). The function of measurement in modern physical science. Isis, 52(168), 161-193. (Rpt. in T. S. Kuhn, (Ed.). (1977). The essential tension: Selected studies in scientific tradition and change (pp. 178-224). Chicago: University of Chicago Press.)

Linacre, J. M. (2011). A user’s guide to WINSTEPS Rasch-Model computer program, v. 3.72.0. Chicago, Illinois: Winsteps.com.

Linacre, J. M. (2013). A user’s guide to FACETS Rasch-Model computer program, v. 3.71.0. Chicago, Illinois: Winsteps.com.

Mandelbrot, B. (2004). The misbehavior of markets. New York: Basic Books.

Massof, R. W., & Ahmadian, L. (2007, July). What do different visual function questionnaires measure? Ophthalmic Epidemiology, 14(4), 198-204.

Moskowitz, M. T., & Dickinson, B. W. (2002). Stochastic resonance in speech recognition: Differentiating between /b/ and /v/. Proceedings of the IEEE International Symposium on Circuits and Systems, 3, 855-858.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Repperger, D. W., & Farris, K. A. (2010, July). Stochastic resonance –a nonlinear control theory interpretation. International Journal of Systems Science, 41(7), 897-907.

Riani, M., & Simonotto, E. (1994). Stochastic resonance in the perceptual interpretation of ambiguous figures: A neural network model. Physical Review Letters, 72(19), 3120-3123.

Smith, R. M., & Plackner, C. (2009). The family approach to assessing fit in Rasch measurement. Journal of Applied Measurement, 10(4), 424-437.

Smith, R. M., & Taylor, P. (2004). Equating rehabilitation outcome scales: Developing common metrics. Journal of Applied Measurement, 5(3), 229-42.

Stenner, A. J., Fisher, W. P., Jr., Stone, M. H., & Burdick, D. S. (2013, August). Causal Rasch models. Frontiers in Psychology: Quantitative Psychology and Measurement, 4(536), 1-14 [doi: 10.3389/fpsyg.2013.00536].

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010, 29 October). Evidence for a collective intelligence factor in the performance of human groups. Science, 330, 686-688.

Woolley, A. W., & Fuchs, E. (2011, September-October). Collective intelligence in the organization of science. Organization Science, 22(5), 1359-1367.

Wu, M. L., Adams, R. J., Wilson, M. R., Haldane, S.A. (2007). ACER ConQuest Version 2: Generalised item response modelling software. Camberwell: Australian Council for Educational Research.