Archive for April, 2014

Measurement as a Medium for the Expression of Creative Passions in Education

April 23, 2014

Measurement is often viewed as a purely technical task involving a reduction of complex phenomena to numbers. It is accordingly also experienced as mechanical in nature, and disconnected from the world of life. Educational examinations are often seen as an especially egregious form of inappropriate reduction.

This perspective on measurement is contradicted, however, by the essential roles of calibrated instrumentation, mathematical scales, and high technology in the production of music, which, ironically, is widely considered the most alive, captivating and emotionally powerful of the arts.

The question then arises as to if and how measurement in other areas, such as in education, might be conceived, designed, and practiced as a medium for the expression and fulfillment of creative passions. Key issues involved in substantively realizing a musical metaphor in human and social measurement include capacities to tune instruments, to define common scales, to orchestrate harmonious relationships, to enhance choral grace note effects, and to combine elements in unique but pleasing and recognizable forms.

Practical methods of this kind are in place in hundreds of schools nationally and internationally. With such tools in hand, formative applications of integrated instruction and assessment could be conceived as intuitive media for composing and conducting expressions of creative passions.

Student outcomes in reading, mathematics, and other domains may then come to be seen in terms of portfolios of works akin to those produced by musicians, sculptors, film makers, or painters. Hundreds of thousands of books and millions of articles tuned to the same text complexity scale provide readers an extensive palette of colorful tones and timbres for expressing their desires and capacities for learning. Graphical presentations of individual students’ outcomes, as well as outcomes aggregated by classroom, school, district, etc., may be interpreted and experienced as public performances of artful developmental narratives enabling dramatic performances of personal uniqueness and social generality.

Technical canvases capture, aggregate, and organize literacy performances into special portfolios documenting the play and dance of emerging new understandings. As in any creative process, accidents, errors, and idiosyncratic patterns of strengths and weaknesses may evoke powerful expressions of beauty, and human and social value. Just as members of musical ensembles may complement one another’s skills, using rhythm and harmony to improve each others’ playing abilities in practice, so, too, instruments of formative assessment tuned to the same scale can be used to enhance individual teacher skill levels.

Possibilities for orchestrating such performances across educational, health care, social service, environmental management, and other fields could similarly take advantage of existing instrument calibration and measurement technologies.

Professional capital as product of human, social, and decisional capitals

April 18, 2014

Leslie Pendrill gave me a tip on a very interesting book, Professional Capital, by Michael Fullan. The author’s distinction between business capital and professional capital is somewhat akin to my distinction (Fisher, 2011) between dead and living capital. The primary point of contact between Fullan’s sense of capital and mine stems from his inclusion of social and decisional capital as crucial enhancements of human capital.

Of course, defining human capital as talent, as Fullan does, is not going to go very far toward supporting generalized management of it. Efficient markets require that capital be represented in transparent and universally available instruments (common currencies or metrics). Transparent, systematic representation makes it possible to act on capital abstractly, in laboratories, courts, and banks, without having to do anything at all with the physical resource itself. (Contrast this with socialism’s focus on controlling the actual concrete resources, and the resulting empty store shelves, unfulfilled five-year plans, pogroms and purges, and overall failure.) Universally accessible transparent representations make capital additive (amounts can be accrued), divisible (it can be divided into shares), and mobile (it can be moved around in networks accepting the currency/metric). (See references below for more information.)

Fullan cites research by Carrie Leanna at the U of Pittsburgh showing that teachers with high social capital increased their students math scores by 5.7% more than teachers with low social capital. The teachers with the highest skill levels (most human capital) and high social capital did the overall best. Low-ability teachers in schools with high social capital did as well as average teachers.

This is great, but the real cream of Fullan’s argument concerns the importance of what he calls decisional capital. I don’t think this will likely work out to be entirely separate from human capital, but his point is well taken: the capacity to consistently engage with students with competence, good judgment, insight, inspiration, creative improvisation, and openness to feedback in a context of shared responsibility is vital. All of this is quite consistent with recent work on collective intelligence (Fischer, Giaccardi, Eden, et al., 2005; Hutchins, 2010; Magnus, 2007; Nersessian, 2006; Woolley, Chabris, Pentland, et al., 2010; Woolley and Fuchs, 2011).

And, of course, you can see this coming: decisional capital is precisely what better measurement provides. Integrated formative and summative assessment informs decision making at the individual level in ways that are otherwise impossible. When those assessments are expressed in uniformly interpretable and applicable units of measurement, collective intelligence and social capital are boosted in the ways documented by Leanna as enhancing teacher performance and boosting student outcomes.

Anyway, just wanted to share that. It fits right in with the trading zone concept I presented at IOMW (the slides are available on my LinkedIn page).

Fischer, G., Giaccardi, E., Eden, H., Sugimoto, M., & Ye, Y. (2005). Beyond binary choices: Integrating individual and social creativity. International Journal of Human-Computer Studies, 63, 482-512.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2003). Measurement and communities of inquiry. Rasch Measurement Transactions, 17(3), 936-938 [http://www.rasch.org/rmt/rmt173.pdf].

Fisher, W. P., Jr. (2004a, Thursday, January 22). Bringing capital to life via measurement: A contribution to the new economics. In R. Smith (Chair), Session 3.3B. Rasch Models in Economics and Marketing. Second International Conference on Measurement. Perth, Western Australia:  Murdoch University.

Fisher, W. P., Jr. (2004b, Friday, July 2). Relational networks and trust in the measurement of social capital. Twelfth International Objective Measurement Workshops. Cairns, Queensland, Australia: James Cook University.

Fisher, W. P., Jr. (2005a). Daredevil barnstorming to the tipping point: New aspirations for the human sciences. Journal of Applied Measurement, 6(3), 173-179.

Fisher, W. P., Jr. (2005b, August 1-3). Data standards for living human, social, and natural capital. In Session G: Concluding Discussion, Future Plans, Policy, etc. Conference on Entrepreneurship and Human Rights. Pope Auditorium, Lowenstein Bldg, Fordham University.

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2008a, 3-5 September). New metrological horizons: Invariant reference standards for instruments measuring human, social, and natural capital. 12th IMEKO TC1-TC7 Joint Symposium on Man, Science, and Measurement. Annecy, France: University of Savoie.

Fisher, W. P., Jr. (2008b, March 28). Rasch, Frisch, two Fishers and the prehistory of the Separability Theorem. In J. William P. Fisher (Ed.), Session 67.056. Reading Rasch Closely: The History and Future of Measurement. American Educational Research Association. New York City [Paper available at SSRN: http://ssrn.com/abstract=1698919%5D: Rasch Measurement SIG.

Fisher, W. P., Jr. (2009a, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009b). NIST Critical national need idea White Paper: Metrological infrastructure for human, social, and natural capital (http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology (11 pages).

Fisher, W. P., Jr. (2010a, 22 November). Meaningfulness, measurement, value seeking, and the corporate objective function: An introduction to new possibilities. Sausalito, California: LivingCapitalMetrics.com (http://ssrn.com/abstract=1713467).

Fisher, W. P. J. (2010b). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital (p. http://ssrn.com/abstract=2340674). Bridge to Business Postdoctoral Certification, Freeman School of Business: Tulane University.

Fisher, W. P., Jr. (2010c). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics: Conference Series, 238(1), http://iopscience.iop.org/1742-6596/238/1/012016/pdf/1742-6596_238_1_012016.pdf.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2011b). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com [Online]. Available: http://ssrn.com/abstract=1739386 (Accessed 18 January 2011).

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr., & Stenner, A. J. (2005, Tuesday, April 12). Creating a common market for the liberation of literacy capital. In R. E. Schumacker (Ed.), Rasch Measurement: Philosophical, Biological and Attitudinal Impacts. American Educational Research Association. Montreal, Canada: Rasch Measurement SIG.

Fisher, W. P., Jr., & Stenner, A. J. (2011a, January). Metrology for the social, behavioral, and economic sciences. Available: http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36 (Accessed 12 January 2014).

Fisher, W. P., Jr., & Stenner, A. J. (2011b, August 31 to September 2). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium. Jena, Germany: http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf.

Hutchins, E. (2010). Cognitive ecology. Topics in Cognitive Science, 2, 705-715.

Magnus, P. D. (2007). Distributed cognition and the task of science. Social Studies of Science, 37(2), 297-310.

Nersessian, N. J. (2006, December). Model-based reasoning in distributed cognitive systems. Philosophy of Science, pp. 699-709.

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010, 29 October). Evidence for a collective intelligence factor in the performance of human groups. Science, pp. 686-688.

Woolley, A. W., & Fuchs, E. (2011, September-October). Collective intelligence in the organization of science. Organization Science, pp. 1359-1367.

Creatively Expressing How Love Matters for Justice: Setting the Stage and Tuning the Instruments

April 16, 2014

Nussbaum (2013) argues about the political importance of connecting with our bodies without shame and disgust, and of the relevance musical and poetic public expressions of varieties of love offer to conceptions of justice. Institutions embodying principles of loving justice require media integrating emotional expression with technical calculation, in exactly the same way music does. Being able to dance at the revolution demands instruments tuned to shared scales, no matter if equal temperament, just intonation, meantone tuning, or any of a variety of other well, or irregular, temperaments are chosen.

The physicality of dancing, so often evoking romance and courtship, provides a point of entry to a metaphoric logic of reproduction applicable to the Socratic midwifery of ideas and to the products of social intercourse. Tuning the instruments of the human, social, and environmental arts and sciences to harmonize and choreograph relationships may then enable formulation of nonreductionist approaches to the problem of how to reconcile political emotions with physical or geometrical accounts of the scales of justice.

Historical accounts of (musical, medical, electrical, etc.) metrological standards describe ways in which passionate concern for shared vulnerabilities and common joys have sometimes succeeded in deploying systems realizing higher forms of just relations (Alder, 2002; Berg and Timmermans, 2000;  Isacoff, 2001; Schaffer, 1992). The question of the day is whether we will succeed in creating yet new forms of such relations in the many areas of life where they are needed.

Yes, as Nussbaum (2013, p. 396) admits, the demand for love is a tall order, and unrealistic. But all heuristic fictions, from Pythagorean triangles to the mathematical pendulum, are unrealistic and are never actually observed in practice, as has been pointed out by a number of historians and philosophers (Butterfield 1957, pp. 16-17; Heidegger, 1967, p. 89; Rasch, 1960, pp. 37-38, 1973/2011). These fictions are, however, eminently useful as guides, goals, and as coherent ways of telling our stories, and that is the criterion by which they should be judged.

 

Alder, K. (2002). The measure of all things: The seven-year odyssey and hidden error that transformed the world. New York: The Free Press.

Berg, M., & Timmermans, S. (2000). Order and their others: On the constitution of universalities in medical work. Configurations, 8(1), 31-61.

Butterfield, H. (1957). The origins of modern science (revised edition). New York: The Free Press.

Heidegger, M. (1967). What is a thing? (W. B. Barton, Jr. & V. Deutsch, Trans.). South Bend, Indiana: Regnery/Gateway.

Isacoff, S. M. (2001). Temperament: The idea that solved music’s greatest riddle. New York: Alfred A. Knopf.

Nussbaum, M. (2013). Political emotions: Why love matters for justice. Cambridge, MA: The Belknap Press of Harvard University Press.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.)

Rasch, G. (1973/2011, Spring). All statistical models are wrong! Comments on a paper presented by Per Martin-Löf, at the Conference on Foundational Questions in Statistical Inference, Aarhus, Denmark, May 7-12, 1973. Rasch Measurement Transactions, 24(4), 1309 [http://www.rasch.org/rmt/rmt244.pdf].

Schaffer, S. (1992). Late Victorian metrology and its instrumentation: A manufactory of Ohms. In R. Bud & S. E. Cozzens (Eds.), Invisible connections: Instruments, institutions, and science (pp. 23-56). Bellingham, WA: SPIE Optical Engineering Press.

Six Classes of Results Supporting the Measurability of Human Functioning and Capability

April 12, 2014

Another example of high-level analysis that suffers from a lack of input from state of the art measurement arises in Nussbaum (1997, p. 1205), where the author remarks that it is now a matter of course, in development economics, “to recognize distinct domains of human functioning and capability that are not commensurable along a single metric, and with regard to which choice and liberty of agency play a fundamental structuring role.” Though Nussbaum (2011, pp. 58-62) has lately given a more nuanced account of the challenges of measurement relative to human capabilities, appreciation of the power and flexibility of contemporary measurement models, methods, and instruments remains lacking. For a detailed example of the complexities and challenges that must be addressed in the context of global human development, which is Nussbaum’s area of interest, see Fisher (2011).

Though there are indeed domains of human functioning and capability that are not commensurable along a single metric, they are not the ones referred to by Nussbaum or the texts she cites. On the contrary, six different approaches to establishing the measurability of human functioning and capability have been explored and proven as providing, especially in their composite aggregate, a substantial basis for theory and practice (modified from Fisher, 2009, pp. 1279-1281). These six classes of results speak to the abstract, mathematical side of the paradox noted by Ricoeur (see previous post here) concerning the need to simultaneously accept roles for abstract ideal global universals and concrete local historical contexts in strategic planning and thinking. The six classes of results are:

  1. Mathematical proofs of the necessity and sufficiency of test and survey scores for invariant measurement in the context of Rasch’s probabilistic models (Andersen, 1977, 1999; Fischer, 1981; Newby, Conner, Grant, and Bunderson, 2009; van der Linden, 1992).
  2. Reproduction of physical units of measurement (centimeters, grams, etc.) from ordinal observations (Choi, 1997; Moulton, 1993; Pelton and Bunderson, 2003; Stephanou and Fisher, 2013).
  3. The common mathematical form of the laws of nature and Rasch models (Rasch, 1960, pp. 110-115; Fisher, 2010; Fisher and Stenner, 2013).
  4. Multiple independent studies of the same constructs on different (and common) samples using different (and the same) instruments intended to measure the same thing converge on common units, defining the same objects, substantiating theory, and supporting the viability of standardized metrics (Fisher, 1997a, 1997b, 1999, etc.).
  5. Thousands of peer-reviewed publications in hundreds of scientific journals provide a wide-ranging and diverse array of supporting evidence and theory.
  6. Analogous causal attributions and theoretical explanatory power can be created in both natural and social science contexts (Stenner, Fisher, Stone, and Burdick, 2013).

What we have here, in sum, is a combination of Greek axiomatic and Babylonian empirical algorithms, in accord with Toulmin’s (1961, pp. 28-33) sense of the contrasting principled bases for scientific advancement. Feynman (1965, p. 46) called for less of a focus on the Greek chain of reasoning approach, as it is only as strong as its weakest link, whereas the Babylonian algorithms are akin to a platform with enough supporting legs that one or more might fail without compromising its overall stability. The variations in theory and evidence under these six headings provide ample support for the conceptual and practical viability of metrological systems of measurement in education, health care, human resource management, sociology, natural resource management, social services, and many other fields. The philosophical critique of any type of economics will inevitably be wide of the mark if uninformed about these accomplishments in the theory and practice of measurement.

References

Andersen, E. B. (1977). Sufficient statistics and latent trait models. Psychometrika, 42(1), 69-81.

Andersen, E. B. (1999). Sufficient statistics in educational measurement. In G. N. Masters & J. P. Keeves (Eds.), Advances in measurement in educational research and assessment (pp. 122-125). New York: Pergamon.

Choi, S. E. (1997). Rasch invents “ounces.” Rasch Measurement Transactions, 11(2), 557 [http://www.rasch.org/rmt/rmt112.htm#Ounces].

Feynman, R. (1965). The character of physical law. Cambridge, Massachusetts: MIT Press.

Fischer, G. H. (1981). On the existence and uniqueness of maximum-likelihood estimates in the Rasch model. Psychometrika, 46(1), 59-77.

Fisher, W. P., Jr. (1997). Physical disability construct convergence across instruments: Towards a universal metric. Journal of Outcome Measurement, 1(2), 87-113.

Fisher, W. P., Jr. (1997). What scale-free measurement means to health outcomes research. Physical Medicine & Rehabilitation State of the Art Reviews, 11(2), 357-373.

Fisher, W. P., Jr. (1999). Foundations for health status metrology: The stability of MOS SF-36 PF-10 calibrations across samples. Journal of the Louisiana State Medical Society, 151(11), 566-578.

Fisher, W. P., Jr. (2009). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2010). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics: Conference Series, 238(1), http://iopscience.iop.org/1742-6596/238/1/012016/pdf/1742-6596_238_1_012016.pdf.

Fisher, W. P., Jr. (2011). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com. Retrieved 18 January 2011, from Social Science Research Network: http://ssrn.com/abstract=1739386.

Fisher, W. P., Jr., & Stenner, A. J. (2013). On the potential for improved measurement in the human and social sciences. In Q. Zhang & H. Yang (Eds.), Pacific Rim Objective Measurement Symposium 2012 Conference Proceedings (pp. 1-11). Berlin, Germany: Springer-Verlag.

Moulton, M. (1993). Probabilistic mapping. Rasch Measurement Transactions, 7(1), 268 [http://www.rasch.org/rmt/rmt71b.htm].

Newby, V. A., Conner, G. R., Grant, C. P., & Bunderson, C. V. (2009). The Rasch model and additive conjoint measurement. Journal of Applied Measurement, 107(4), 348-354.

Nussbaum, M. (1997). Flawed foundations: The philosophical critique of (a particular type of) economics. University of Chicago Law Review, 64, 1197-1214.

Nussbaum, M. (2011). Creating capabilities: The human development approach. Cambridge, MA: The Belknap Press.

Pelton, T., & Bunderson, V. (2003). The recovery of the density scale using a stochastic quasi-realization of additive conjoint measurement. Journal of Applied Measurement, 4(3), 269-281.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Rasch, G. (1977). On specific objectivity: An attempt at formalizing the request for generality and validity of scientific statements. Danish Yearbook of Philosophy, 14, 58-94.

Stenner, A. J., Fisher, W. P., Jr., Stone, M. H., & Burdick, D. S. (2013). Causal Rasch models. Frontiers in Psychology: Quantitative Psychology and Measurement, 4(536), 1-14.

Stephanou, A., & Fisher, W. P., Jr. (2013). From concrete to abstract in the measurement of length. Journal of Physics Conference Series, 459, http://iopscience.iop.org/1742-6596/459/1/012026.

Toulmin, S. E. (1961). Foresight and understanding: An enquiry into the aims of science. London, England: Hutchinson.

van der Linden, W. J. (1992). Sufficient and necessary statistics. Rasch Measurement Transactions, 6(3), 231 [http://www.rasch.org/rmt/rmt63d.htm].

 

Revisiting the “Glocal” integration of universals and historical context

April 11, 2014

Integrated considerations of the universal and the local, the pure ideal parameters and the messy concrete observations, seem ever more ubiquitous in my reading lately. For instance, Ricoeur (1992, p. 289) takes up the problem of human rights imperfectly realized as a product of Western Europe’s cultural history that has nonetheless been adopted by nearly every country in the world. Ricoeur raises the notion of “universals in context or of potential or inchoate universals” that embody the paradox in which

“on the one hand, one must maintain the universal claim attached to a few values where the universal and the historical intersect, and on the other hand, one must submit this claim to discussion, not on a formal level, but on the level of the convictions incorporated in concrete forms of life.”

I could hardly come up with a better description of Rasch measurement theory and practice myself. Any given Rasch model data analysis provides many times more individual-level qualitative statistics on the concrete, substantive observations than on the global quantitative measures. The whole point of graphical displays of measurement information in kidmaps (Chien, Wang, Wang, & Lin, 2009; Masters, 1994), Wright maps (Wilson, 2011), construct maps and self-scoring forms (Best, 2008; Linacre, 1997), etc. is precisely to integrate concrete events as they happened with the abstract ideal of a shared measurement dimension.

It is such a shame that there are so few people thinking about these issues aware of the practical value of the state of the art in measurement, and who include all of the various implications of multifaceted, multilevel, and multi-uni-dimensional modeling, fit assessment, equating, construct mapping, standard setting, etc. in their critiques.

The problem falls squarely in the domain of recent work on the coproduction of social, scientific, and economic orders (such as Hutchins 2010, 2012; Nersessian, 2012). Systems of standards, from languages to metric units to dollars, prethink the world for us and simplify a lot of complex work. But then we’re stuck at the level of conceptual, social, economic, and scientific complexity implied by those standards, unless we can create new forms of social organization integrating more domains. Those who don’t know anything about the available tools can’t get any analytic traction, those who know about the tools but don’t connect with the practitioners can’t get any applied traction (see Wilson’s Psychometric Society Presidential Address on this; Wilson, 2013), analysts and practitioners who form alliances but fail to include accountants or administrators may lack financial or organizational traction, etc. etc.

There’s a real need to focus on the formation of alliances across domains of practice, building out the implications of Callon’s (1995, p. 58) observation that “”translation networks weave a socionature.” In other words, standards are translated into the languages of different levels and kinds of practice to the extent that people become so thoroughly habituated to them that they succumb to the illusion that the objects of interest are inherently natural in self-evident ways. (My 2014 IOMW talk took this up, though there wasn’t a lot of time for details.)

Those who are studying these networks have come to important insights that set the stage for better measurement and metrology for human, social, and natural capital. For instance, in a study of universalities in medicine, Berg and Timmermans (2000, pp. 55, 56) note:

“In order for a statistical logistics to enhance precise decision making, it has to incorporate imprecision; in order to be universal, it has to carefully select its locales. The parasite cannot be killed off slowly by gradually increasing the scope of the Order. Rather, an Order can thrive only when it nourishes its parasite—so that it can be nourished by it.”

“Paradoxically, then, the increased stability and reach of this network was not due to more (precise) instructions: the protocol’s logistics could thrive only by parasitically drawing upon its own disorder.”

Though Berg and Timmermans show no awareness at all of probabilistic and additive conjoint measurement theory and practice, their description of how a statistical logistics has to work to enhance precise decision making is right on target. This phenomenon of noise-induced order is a kind of social stochastic resonance (Fisher, 1992, 2011b) that provides another direction in which explanations of Rasch measurement’s potential role in establishing new metrological standards (Fisher, 2009, 2011a) have to be taken.

Berg, M., & Timmermans, S. (2000). Order and their others: On the constitution of universalities in medical work. Configurations, 8(1), 31-61.

Best, W. R. (2008). A construct map that Ben Wright would relish. Rasch Measurement Transactions, 22(3), 1169-70 [http://www.rasch.org/rmt/rmt223a.htm].

Callon, M. (1995). Four models for the dynamics of science. In S. Jasanoff, G. E. Markle, J. C. Petersen & T. Pinch (Eds.), Handbook of science and technology studies (pp. 29-63). Thousand Oaks, California: Sage Publications.

Chien, T.-W., Wang, W.-C., Wang, H.-Y., & Lin, H.-J. (2009). Online assessment of patients’ views on hospital performances using Rasch model’s KIDMAP diagram. BMC Health Services Research, 9, 135 [10.1186/1472-6963-9-135 or http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727503/%5D.

Fisher, W. P., Jr. (1992, Spring). Stochastic resonance and Rasch measurement. Rasch Measurement Transactions, 5(4), 186-187 [http://www.rasch.org/rmt/rmt54k.htm].

Fisher, W. P., Jr. (2009, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2011b). Stochastic and historical resonances of the unit in physics and psychometrics. Measurement: Interdisciplinary Research & Perspectives, 9, 46-50.

Hutchins, E. (2010). Cognitive ecology. Topics in Cognitive Science, 2, 705-715.

Hutchins, E. (2012). Concepts in practice as sources of order. Mind, Culture, and Activity, 19, 314-323.

Linacre, J. M. (1997). Instantaneous measurement and diagnosis. Physical Medicine and Rehabilitation State of the Art Reviews, 11(2), 315-324 [http://www.rasch.org/memo60.htm].

Masters, G. N. (1994). KIDMAP – a history. Rasch Measurement Transactions, 8(2), 366 [http://www.rasch.org/rmt/rmt82k.htm].

Nersessian, N. J. (2012). Engineering concepts: The interplay between concept formation and modeling practices in bioengineering sciences. Mind, Culture, and Activity, 19, 222-239.

Wilson, M. R. (2011). Some notes on the term: “Wright Map.” Rasch Measurement Transactions, 25(3), 1331 [http://www.rasch.org/rmt/rmt253.pdf].

Wilson, M. (2013, April). Seeking a balance between the statistical and scientific elements in psychometrics. Psychometrika, 78(2), 211-236.