Archive for August, 2018

Metrics, Stocks, Shares, and Secure Ledger Accounts for Living Capital: Getting the Information into the Hands of Individual Decision Makers

August 30, 2018

Individual investments in, and returns from, shares of various kinds of human, social, and natural capital stocks will be tracked in secure online accounting ledgers, often referred to generically using the Blockchain brand name. A largely unasked and unanswered question is just what kind of data would best be tracked in secure ledgers. To be meaningful, entries in such accounts will have to stand for something real in the world that is represented in a common language interpretable to anyone capable of reading the relevant signs and symbols. Since we are talking about amounts of things that vary, measurement will unavoidably be a factor.

High quality measurement is essential to the manageability and profitability of investments of all kinds, whether in manufactured capital and property, or in literacy, numeracy, mental and physical health, sociability, and environmental quality (human, social, and natural capital). The measurability and manageability of these intangible factors has achieved significant levels of scientific precision and rigor over the last 90 and more years.

This development is of increasing interest to economists and accountants who have long envisioned ways of reinventing capitalism that do not assume the only alternative is some form of socialism or communism (see references listed below). Many of today’s economic problems may follow from capitalism’s incompleteness. More specifically, we may be suffering from the way in which manufactured capital alone has been been brought to life, economically speaking, while human, social, and natural capital have not (Fisher, 2002, 2007, 2009a/b, 2010a/b, 2011a/b, 2012ab, 2014, etc.).

One in particular who speaks directly to an essential issue that must be addressed in creating an economy of authentic wealth and genuine productivity is Paul Hawken (2007, pp. 21-22), who says that Friedrich Hayek foresaw

“a remedy for the basic expression of the totalitarian impulse: ensuring that information and the right to make decisions are co-located. To achieve this, one can either move the information to the decision makers, or move decision making rights to the information. The movement strives to do both. The earth’s problems are everyone’s problems, and what modern technology and the movement can achieve together is to distribute problem solving tools.”

Hayek (1945, 1948, 1988; Frantz & Leeson, 2013) is well known for his focus on a distinction between a mechanical definition of individuals as uniform and homogenous, and a more vital sense of economic “true individuals” as complex and interdependent. To create efficient markets for the production of authentic wealth, we need to figure out how to extend the “true individuals” of manufactured capital markets into new markets for human, social, and natural capital (Fisher, 2014).

The distributed problem solving tools we need to support the decision making of “true” individuals are secure online ledgers accounting for investments in measured amounts of authentic wealth. Efficient markets are functions of individual processes that create wholes greater than their sums. The multiplier effect that makes this possible depends on transparent communication. Words, including number words, have to mean something specific and distinct. This is where the value of systematic measurement and metrology comes to bear. This is why we need an Intangible Assets Metric System.

For as long as economists have been concerned with markets, philosophers have been pointing out that society is an effect of shared symbol systems. In both cases, economists and philosophers are focused on the fact that it is only when people have a common language that an idea, a meme, can go viral, that a market can seem to have a mind of its own, and science can maintain an ever-increasing pace of technical innovation.

Our aim is to create the information that will populate the entries in the secure ledger accounts people use to track and manage their investments in literacy, numeracy, health, social, and natural capital. These entries will be posted right alongside their existing entries for investments in manufactured capital and property, which includes everything from groceries to autos to electronics to homes.

But the new ledger accounts will be different from today’s in important ways. Many current accounting entries are ultimately written off as costs producing untracked and unaccountable returns. We simply spend the money on groceries or school tuition or a doctor visit. The income is logged, and so are the expenses. We can see that, yes, buying groceries is an investment of a kind, since we profit from it by enjoying the processes of cooking, sharing, and eating tasty food, by avoiding hunger, and by sustaining good health.

Investments are tracked in a different way, though. Money is not just spent and kissed goodbye. Instead, investment funds are loaned to or leased by someone else who is expected to be able to increase the value of those funds. There are often no guarantees of an increase, but the invested value is associated with a proportionate share in the total value of the business. As the business grows or fails, so does the investment.

In much the same way, if we had the information available to us, we could track the returns on the investments we make in food, education, or health care. If we track the impacts of our dietary choices, we would be able to see if and when the investments we make result in healthy outcomes. The information brought to bear will have to include systematic advice relevant to one’s age, sex, pre-existing conditions, genetic propensities, etc. Additional information on the returns on one’s investments in a healthy diet should also be made available, as might be found in the expected income or expenses associated with the consequences of what is eaten, and how much of it. Sometimes there will be room for improvement, for example, if the foods we eat are too sugary or fatty, or if we eat too much. Other times, maintaining a healthy, varied diet may be all that is needed to see a consistent positive return on investment.

Public reports will allow us all to learn from one another. The ability to communicate in a common language and to see what has worked for others will enable everyone to experiment with new ways of doing things. People with common food interests or problems, for instance, will be able quickly evaluate the relevance and benefits of other people’s approaches or solutions. Because of the ways in which communication and community go together, it may be reasonable to hope that new levels of innovation, diversity, tolerance, and respect will follow.

Many aspects of work, education and health care are already undergoing transformations that move their processes out of the usual office, school and hospital environments. These changes will be accelerated as distributed network effects take hold in each of these various markets.

It is easy to see how the Internet of things may evolve to be the medium in which we manage relationships of all kinds, from education and school to health and safety to work and career. Secure ledgers immune from hacking will be essential. And an important health factor will be to know how much relationship management is enough, and when it’s time to get out into the world. That balancing factor will be a key aspect of a successful approach to connecting information on authentic wealth with the individual decision makers growing it and living it.

References

Andriessen, D. (2003). Making sense of intellectual capital: Designing a method for the valuation of intangibles. Oxford, England: Butterworth-Heinemann.

Anielski, M. (2007). The economics of happiness: Building genuine wealth. Gabriola, British Columbia: New Society Publishers.

Cadman, D. (1986). Money as if people mattered. In P. Ekins &  Staff of The Other Economic Summit (Eds.), The living economy: A new economics in the making (pp. 204-210). London: Routledge & Kegan Paul.

Eisler, R. (2007). The real wealth of nations: Creating a caring economics. San Francisco, California: Berrett-Koehler Publishers, Inc.

Ekins, P. (1992). A four-capital model of wealth creation. In P. Ekins & M. Max-Neef (Eds.), Real-life economics: Understanding wealth creation (pp. 147-155). London: Routledge.

Ekins, P. (1999). Economic growth and environmental sustainability: The prospects for green growth. New York: Routledge.

Ekins, P., Dresner, S., & Dahlstrom, K. (2008, March/April). The four-capital method of sustainable development evaluation. European Environment, 18(2), 63-80.

Ekins, P., Hillman, M., & Hutchison, R. (1992). The Gaia atlas of green economics (Foreword by Robert Heilbroner). New York: Anchor Books.

Ekins, P., & Max-Neef, M. A. (Eds.). (1992). Real-life economics: Understanding wealth creation. London: Routledge.

Ekins, P., & Voituriez, T. (2009). Trade, globalization and sustainability impact assessment: A critical look at methods and outcomes. London, England: Earthscan Publications Ltd.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009a, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009b). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (Tech. Rep., http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010a). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital., Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (p. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340674).

Fisher, W. P., Jr. (2010b, 13 January). Reinventing capitalism: Diagramming living capital flows in a green, sustainable, and responsible economy. Retrieved from LivingCapitalMetrics.com: https://livingcapitalmetrics.wordpress.com/2010/01/13/reinventing-capitalism/.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. Journal of Applied Measurement, 12(1), 49-66.

Fisher, W. P., Jr. (2011b). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com. Retrieved 18 January 2011, from Social Science Research Network: http://ssrn.com/abstract=1739386.

Fisher, W. P., Jr. (2012a). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012b, May/June). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2014, Autumn). The central theoretical problem of the social sciences. Rasch Measurement Transactions, 28(2), 1464-1466.

Frantz, R., & Leeson, R. (Eds.). (2013). Hayek and behavioral economics. (Archival Insights Into the Evolution of Economics). New York: Palgrave Macmillan.

Gleeson-White, J. (2015). Six capitals, or can accountants save the planet? Rethinking capitalism for the 21st century. New York: Norton.

Greider, W. (2003). The soul of capitalism: Opening paths to a moral economy. New York: Simon & Schuster.

Griliches, Z. (1994, March). Productivity, R&D, and the data constraint. American Economic Review, 84(1), 1-23.

Grootaert, C. (1998). Social capital: The missing link? (Vol. 3). Social Capital Intiative Working Paper). Washington, D.C.: The World Bank.

Hand, J. R. M., & Lev, B. (Eds.). (2003). Intangible assets: Values, measures, and risks. Oxford Management Readers). Oxford, England: Oxford University Press.

Hart, S. L. (2005). (2007). Capitalism at the crossroads: Aligning business, earth, and humanity (Foreword by Al Gore) (2nd ed.). Wharton School Publishing.

Hawken, P. (1993). The ecology of commerce: A declaration of sustainability. New York: HarperCollins Publishers.

Hawken, P. (2007). Blessed unrest: How the largest movement in the world came into being and why no one saw it coming. New York: Viking Penguin.

Hayek, F. A. (1945, September). The use of knowledge in society. American Economic Review, 35, 519-530. (Rpt. in Individualism and economic order (pp. 77-91). Chicago: University of Chicago Press.)

Hayek, F. A. (1955). The counter revolution of science. Glencoe, Illinois: Free Press.

Hayek, F. A. (1988). The fatal conceit: The errors of socialism (W. W. Bartley, III, Ed.) (Vol. I). The Collected Works of F. A. Hayek. Chicago: University of Chicago Press.

Korten, D. (2009). Agenda for a new economy: From phantom wealth to real wealth. San Francisco: Berret-Koehler Publishing.

Krueger, A. B. (Ed.). (2009). Measuring the subjective well-being of nations: National accounts of time use and well-being. National Bureau of Economic Research Conference Reports). Chicago, Illinois: University of Chicago Press.

Swann, G. M. P. (2001). “No Wealth But Life”: When does conventional wealth create Ruskinian wealth. European Research Studies, 4(3-4), 5-18.

Vemuri, A. W., & Costanza, R. (2006, 10 June). The role of human, social, built, and natural capital in explaining life satisfaction at the country level: Toward a National Well-Being Index. Ecological Economics, 58(1), 119-133.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Advertisements

Self-Sustaining Sustainability, Once Again, Already

August 12, 2018

The urgent need for massive global implementations of sustainability policies and practices oddly and counterproductively has not yet led to systematic investments in state of the art sustainability metric standards. My personal mission is to contribute to meeting this need. Longstanding, proven resources in the art and science of precision instrumentation calibration and explanatory theory are available to address these problems. In the same way technical standards for measuring length, mass, volume, time, energy, light, etc. enable the coordination of science and commerce for manufactured capital and property, so, too, will a new class of standards for measuring human, social, and natural capital.

This new art and science contradicts common assumptions in three ways. First, contrary to popular opinion that measuring these things is impossible, over 90 years of research and practice support a growing consensus among weights and measures standards engineers (metrologists) and social and psychological measurement experts that relevant unit standards are viable, feasible, and desirable.

Common perceptions are contradicted in a second way in that measurement of this kind does not require reducing human individuality to homogenized uniform sameness. Instead of a mechanical metaphor of cogs in a machine, the relevant perspective is an organic or musical one. The goal is to ensure that local uniqueness and creative improvisations are freely expressed in a context informed by shared standards (like DNA, or a musical instrument tuning system).

The third way in which much of what we think we know is mistaken concerns how to motivate adoption of sustainability policies and practices. Many among us are fearful that neither the general population nor its leaders in government and business care enough about sustainability to focus on implementing solutions. But finding the will to act is not the issue. The problem is how to create environments in which new sustainable forms of life multiply and proliferate of their own accord. To do this, people need means for satisfying their own interests in life, liberty, and the pursuit of happiness. The goal, therefore, is to organize knowledge infrastructures capable of informing and channeling the power of individual self-interest. The only way mass scale self-sustaining sustainable economies will ever happen is by tapping the entrepreneurial energy of the profit motive, where profit is defined not just in financial terms but in the quality of life and health terms of authentic wealth and genuine productivity.

We manage what we measure. If we are to collectively, fluidly, efficiently, and innovatively manage the living value of our human, social, and natural capital, we need, first, high quality information expressed in shared languages communicating that value. Second, we need, to begin with, new scientific, legal, economic, financial, and governmental institutions establishing individual rights to ownership of that value, metric units expressing amounts of that value, conformity audits for ascertaining the accuracy and precision of those units, financial alignments of the real value measured with bankable dollar amounts, and investment markets to support entrepreneurial innovations in creating that value.

The end result of these efforts will be a capacity for all of humanity to pull together in common cause to create a sustainable future. We will each be able to maximize our own personal potential at the same time we contribute to the greater good. We will not only be able to fulfill the potential of our species as stewards of the earth, we will have fun doing it! For technical information resources, see below. PDFs are available on request, and can often be found freely available online.

Self-Sustaining Sustainability

Relevant Information Resources

William P. Fisher, Jr., Ph.D.

Barney, M., & Fisher, W. P., Jr. (2016). Adaptive measurement and assessment. Annual Review of Organizational Psychology and Organizational Behavior, 3, 469-490.

Fisher, W. P., Jr. (1997). Physical disability construct convergence across instruments: Towards a universal metric. Journal of Outcome Measurement, 1(2), 87-113.

Fisher, W. P., Jr. (1999). Foundations for health status metrology: The stability of MOS SF-36 PF-10 calibrations across samples. Journal of the Louisiana State Medical Society, 151(11), 566-578.

Fisher, W. P., Jr. (2000). Objectivity in psychosocial measurement: What, why, how. Journal of Outcome Measurement, 4(2), 527-563.

Fisher, W. P., Jr. (2002). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2003). The mathematical metaphysics of measurement and metrology: Towards meaningful quantification in the human sciences. In A. Morales (Ed.), Renascent pragmatism: Studies in law and social science (pp. 118-153). Brookfield, VT: Ashgate Publishing Co.

Fisher, W. P., Jr. (2004). Meaning and method in the social sciences. Human Studies: A Journal for Philosophy & Social Sciences, 27(4), 429-454.

Fisher, W. P., Jr. (2007). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009, November 19). Draft legislation on development and adoption of an intangible assets metric system. Living Capital Metrics blog: https://livingcapitalmetrics.wordpress.com/2009/11/19/draft-legislation/.

Fisher, W. P., Jr. (2009). Invariance and traceability for measures of human, social, and natural capital. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010, 22 November). Meaningfulness, measurement, value seeking, and the corporate objective function: An introduction to new possibilities. LivingCapitalMetrics.com, Sausalito, California.

Fisher, W. P., Jr. (2010). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital. Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340674).

Fisher, W. P., Jr. (2010). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics Conference Series, 238(1), 012016.

Fisher, W. P., Jr. (2011). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2015). A probabilistic model of the law of supply and demand. Rasch Measurement Transactions, 29(1), 1508-1511 [http://www.rasch.org/rmt/rmt291.pdf].

Fisher, W. P., Jr. (2015). Rasch measurement as a basis for metrologically traceable standards. Rasch Measurement Transactions, 28(4), 1492-1493 [http://www.rasch.org/rmt/rmt284.pdf].

Fisher, W. P., Jr. (2015). Rasch metrology: How to expand measurement locally everywhere. Rasch Measurement Transactions, 29(2), 1521-1523.

Fisher, W. P., Jr. (2017, September). Metrology, psychometrics, and new horizons for innovation. 18th International Congress of Metrology, Paris, 10.1051/metrology/201709007.

Fisher, W. P., Jr. (2017). A practical approach to modeling complex adaptive flows in psychology and social science. Procedia Computer Science, 114, 165-174.

Fisher, W. P., Jr. (2018). How beauty teaches us to understand meaning. Educational Philosophy and Theory, in review.

Fisher, W. P., Jr. (2018). Separation theorems in econometrics and psychometrics: Rasch, Frisch, two Fishers, and implications for measurement. Scandinavian Economic History Review, in review.

Fisher, W. P., Jr., Harvey, R. F., & Kilgore, K. M. (1995). New developments in functional assessment: Probabilistic models for gold standards. NeuroRehabilitation, 5(1), 3-25.

Fisher, W. P., Jr., Harvey, R. F., Taylor, P., Kilgore, K. M., & Kelly, C. K. (1995). Rehabits: A common language of functional assessment. Archives of Physical Medicine and Rehabilitation, 76(2), 113-122.

Fisher, W. P., Jr., & Stenner, A. J. (2011, January). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series).National Science Foundation: http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36.

Fisher, W. P., Jr., & Stenner, A. J. (2011, August 31 to September 2). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium, http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf, Jena, Germany.

Fisher, W. P., Jr., & Stenner, A. J. (2016). Theory-based metrological traceability in education: A reading measurement network. Measurement, 92, 489-496.

Fisher, W. P., Jr., & Wilson, M. (2015). Building a productive trading zone in educational assessment research and practice. Pensamiento Educativo: Revista de Investigacion Educacional Latinoamericana, 52(2), 55-78.

Pendrill, L., & Fisher, W. P., Jr. (2013). Quantifying human response: Linking metrological and psychometric characterisations of man as a measurement instrument. Journal of Physics Conference Series, 459, 012057.

Pendrill, L., & Fisher, W. P., Jr. (2015). Counting and quantification: Comparing psychometric and metrological perspectives on visual perceptions of number. Measurement, 71, 46-55.

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Self-Sustaining Sustainability

August 6, 2018

After decades of efforts and massive resources expended in trying to create a self-sustaining sustainable economy, perhaps it is time to wonder if we are going about it the wrong way. There seems to be truly significant and widespread desire for change, but the often inspiring volumes of investments and ingenuity applied to the problem persistently prove insufficient to the task. Why?

I’ve previously and repeatedly explained how finding the will to change is not the issue. This time I’ll approach my proposed solution in a different way.

Q: How do we create a self-sustaining sustainable economy?

A: By making sustainability profitable in monetary terms as well as in the substantive real terms of the relationships we live out with each other and the earth. Current efforts in this regard focus solely on reducing energy costs enough to compensate for investments in advancing the organizational mission. We need far more comprehensively designed solutions than that.

Q: How do we do that?

A: By financially rewarding improved sustainability at every level of innovation, from the individual to the community to the firm.

Q: How do we do that?

A: By instituting rights to the ownership of human, social, and natural capital properties, and by matching the demand for sustainability with the supply of it in a way that will inform arbitrage and pricing.

Q: How do we do that?

A: By lowering the cost of the information needed to be able to know how many shares of human, social, and natural capital stocks are owned, and to match demand with supply.

Q: How could that be done?

A: By investing as a society in improving the quality and distribution of the available information.

Q: What does that take?

A: Creating dependable and meaningful tools for ascertaining the quantity, quality, and type of sustainability impacts on human, social, and natural capital being offered.

Q: Can that be done?

A: The technical art and science of measurement needed for creating these tools is well established, having been in development for almost 100 years.

Q: How do we start?

A: An important lesson of history is that building the infrastructure and its array of applications follows in the wake of, and cannot precede, the institution of the constitutional ideals. We must know what the infrastructure and applications will look like in their general features, but nothing will ever be done if we think we have to have them in place before instantiating the general frame of reference. The most general right to own legal title to human, social, and natural capital can be instituted, and the legal status of new metric system units can be established, before efforts are put into unit standards, traceability processes, protocols for intralaboratory ruggedness tests and interlaboratory round robin trials, conformity assessments, etc.

Q: It sounds like an iterative process.

A: Yes, one that must attend from the start to the fundamental issues of information coherence and complexity, as is laid out in my recent work with Emily Oon, Spencer Benson, Jack Stenner, and others.

Q: This sounds highly technical, utilitarian, and efficient. But all the talk of infrastructure, standards, science, and laboratories sounds excessively technological. Is there any place in this scheme for ecological values, ethics, and aesthetics? And how are risk and uncertainty dealt with?

A: We can take up each of these in turn.

Ecological values: To use an organic metaphor, we know the DNA of the various human, social, and natural capital forms of life, or species, and we know their reproductive and life cycles, and their ecosystem requirements. What we have not done is to partner with each of these species in relationships that focus on maximizing the quality of their habitats, their maturation, and the growth of their populations. Social, psychological, and environmental relationships are best conceived as ecosystems of mutual interdependencies. Being able to separate and balance within-individual, between-individual, and collective levels of complexity in these interdependencies will be essential to the kinds of steward leadership needed for creating and maintaining new sociocognitive ecosystems. Our goal here is to become the change we want to institute, since caterpillar to butterfly metamorphoses come about only via transformations from within.

Ethics: The motivating intention is to care simultaneously and equally effectively for both individual uniqueness and global humanity. In accord with the most fundamental ethical decision, we choose discourse over violence, and we do so by taking language as the model for how things come into words. Language is itself alive in the sense of the collective processes by which new meanings come into it. Language moreover has the remarkable capacity of supporting local concrete improvisations and creativity at the same time that it provides navigable continuity and formal ideals. Care for the unity and sameness of meaning demands a combination of rigorous conceptual determinations embodied in well-defined words with practical applications of those words in local improvisations. That is how we support the need to make decisions with inevitably incomplete and inconsistent information while not committing the violence of the premature conclusion. The challenge is one of finding a balance between openness and boundaries that allows language and our organizational cultures to be stable while also evolving. Our technical grasp of complex adaptive systems, autopoiesis, and stochastic measurement information models is advanced enough to meet these ethical requirements of caring for ourselves, each other, and the earth.

Aesthetics: An aesthetic desire for and love of beauty roots the various forms of life inhabiting diverse niches in the proposed knowledge ecosystem and information infrastructure, and does so in the ground of the ethical choice of discourse and meaning over violence. The experience of beauty teaches us how to understand meaning. The attraction to beauty is a unique human phenomenon because it combines apparent opposites into a single complex feeling. Even when the object of desire is possessed as fully as possible, desire is not eliminated, and even when one feels the object of desire to be lost or completely out of touch, its presence and reality is still felt. So, too, with meaning: no actual instance of anything in the world ever embodies the fullness of an abstract conceptual ideal. This lesson of beauty is perhaps most plainly conveyed in music, where artists deliberately violate the standards of instrument tuning to create fascinating and absorbing combinations of harmony and dissonance from endlessly diverse ensembles. Some tunings persist beyond specific compositions to become immediately identifiable trademark sounds. In taking language as a model, the aesthetic combination of desire and possession informs the ethics of care for the unity and sameness of meaning, and vice versa. And ecological values, ethics, and aesthetics stand on par with the technical concerns of calibration and measurement.

Risk and uncertainty: Calibrating a tool relative to a unit standard is by itself already a big step toward reducing uncertainty and risk. Instead of the chaos of dozens of disconnected sustainability indicators, or the cacophony of hundreds or thousands of different tests, assessments, or surveys measuring the same things, we will have data and theory supporting interpretation of reproducible patterns. These patterns will be, and in many cases already are, embodied in instruments that further reduce risk by defining an invariant unit of comparison, simplifying interpretation, reducing opportunities for mistakes, by quantifying uncertainty, and by qualifying it in terms of the anomalous exceptions that depart from expectations. Each of these is a special feature of rigorously defined measurement that will eventually become the expected norm for information on sustainability.

For more on these themes, see my other blog posts here, my various publications, and my SSRN page.

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.