Archive for the ‘Traceability’ Category

Excerpts and Notes from Goldberg’s “Billions of Drops…”

December 23, 2015

Goldberg, S. H. (2009). Billions of drops in millions of buckets: Why philanthropy doesn’t advance social progress. New York: Wiley.

p. 8:
Transaction costs: “…nonprofit financial markets are highly disorganized, with considerable duplication of effort, resource diversion, and processes that ‘take a fair amount of time to review grant applications and to make funding decisions’ [citing Harvard Business School Case No. 9-391-096, p. 7, Note on Starting a Nonprofit Venture, 11 Sept 1992]. It would be a major understatement to describe the resulting capital market as inefficient.”

A McKinsey study found that nonprofits spend 2.5 to 12 times more raising capital than for-profits do. When administrative costs are factored in, nonprofits spend 5.5 to 21.5 times more.

For-profit and nonprofit funding efforts contrasted on pages 8 and 9.

p. 10:
Balanced scorecard rating criteria

p. 11:
“Even at double-digit annual growth rates, it will take many years for social entrepreneurs and their funders to address even 10% of the populations in need.”

p. 12:
Exhibit 1.5 shows that the percentages of various needs served by leading social enterprises are barely drops in the respective buckets; they range from 0.07% to 3.30%.

pp. 14-16:
Nonprofit funding is not tied to performance. Even when a nonprofit makes the effort to show measured improvement in impact, it does little or nothing to change their funding picture. It appears that there is some kind of funding ceiling implicitly imposed by funders, since nonprofit growth and success seems to persuade capital sources that their work there is done. Mediocre and low performing nonprofits seem to be able to continue drawing funds indefinitely from sympathetic donors who don’t require evidence of effective use of their money.

p. 34:
“…meaningful reductions in poverty, illiteracy, violence, and hopelessness will require a fundamental restructuring of nonprofit capital markets. Such a restructuring would need to make it much easier for philanthropists of all stripes–large and small, public and private, institutional and individual–to fund nonprofit organizations that maximize social impact.”

p. 54:
Exhibit 2.3 is a chart showing that fewer people rose from poverty, and more remained in it or fell deeper into it, in the period of 1988-98 compared with 1969-1979.

pp. 70-71:
Kotter’s (1996) change cycle.

p. 75:
McKinsey’s seven elements of nonprofit capacity and capacity assessment grid.

pp. 94-95:
Exhibits 3.1 and 3.2 contrast the way financial markets reward for-profit performance with the way nonprofit markets reward fund raising efforts.

Financial markets
1. Market aggregates and disseminates standardized data
2. Analysts publish rigorous research reports
3. Investors proactively search for strong performers
4. Investors penalize weak performers
5. Market promotes performance
6. Strong performers grow

Nonprofit markets
1. Social performance is difficult to measure
2. NPOs don’t have resources or expertise to report results
3. Investors can’t get reliable or standardized results data
4. Strong and weak NPOs spend 40 to 60% of time fundraising
5. Market promotes fundraising
6. Investors can’t fund performance; NPOs can’t scale

p. 95:
“…nonprofits can’t possibly raise enough money to achieve transformative social impact within the constraints of the existing fundraising system. I submit that significant social progress cannot be achieved without what I’m going to call ‘third-stage funding,’ that is, funding that doesn’t suffer from disabling fragmentation. The existing nonprofit capital market is not capable of [p. 97] providing third-stage funding. Such funding can arise only when investors are sufficiently well informed to make big bets at understandable and manageable levels of risk. Existing nonprofit capital markets neither provide investors with the kinds of information needed–actionable information about nonprofit performance–nor provide the kinds of intermediation–active oversight by knowledgeable professionals–needed to mitigate risk. Absent third-stage funding, nonprofit capital will remain irreducibly fragmented, preventing the marshaling of resources that nonprofit organizations need to make meaningful and enduring progress against $100 million problems.”

pp. 99-114:
Text and diagrams on innovation, market adoption, transformative impact.

p. 140:
Exhibit 4.2: Capital distribution of nonprofits, highlighting mid-caps

pages 192-3 make the case for the difference between a regular market and the current state of philanthropic, social capital markets.

p. 192:
“So financial markets provide information investors can use to compare alternative investment opportunities based on their performance, and they provide a dynamic mechanism for moving money away from weak performers and toward strong performers. Just as water seeks its own level, markets continuously recalibrate prices until they achieve a roughly optimal equilibrium at which most companies receive the ‘right’ amount of investment. In this way, good companies thrive and bad ones improve or die.
“The social sector should work the same way. .. But philanthropic capital doesn’t flow toward effective nonprofits and away from ineffective nonprofits for a simple reason: contributors can’t tell the difference between the two. That is, philanthropists just don’t [p. 193] know what various nonprofits actually accomplish. Instead, they only know what nonprofits are trying to accomplish, and they only know that based on what the nonprofits themselves tell them.”

p. 193:
“The signs that the lack of social progress is linked to capital market dysfunctions are unmistakable: fundraising remains the number-one [p. 194] challenge of the sector despite the fact that nonprofit leaders divert some 40 to 60% of their time from productive work to chasing after money; donations raised are almost always too small, too short, and too restricted to enhance productive capacity; most mid-caps are ensnared in the ‘social entrepreneur’s trap’ of focusing on today and neglecting tomorrow; and so on. So any meaningful progress we could make in the direction of helping the nonprofit capital market allocate funds as effectively as the private capital market does could translate into tremendous advances in extending social and economic opportunity.
“Indeed, enhancing nonprofit capital allocation is likely to improve people’s lives much more than, say, further increasing the total amount of donations. Why? Because capital allocation has a multiplier effect.”

“If we want to materially improve the performance and increase the impact of the nonprofit sector, we need to understand what’s preventing [p. 195] it from doing a better job of allocating philanthropic capital. And figuring out why nonprofit capital markets don’t work very well requires us to understand why the financial markets do such a better job.”

p. 197:
“When all is said and done, securities prices are nothing more than convenient approximations that market participants accept as a way of simplifying their economic interactions, with a full understanding that market prices are useful even when they are way off the mark, as they so often are. In fact, that’s the whole point of markets: to aggregate the imperfect and incomplete knowledge held by vast numbers of traders about much various securities are worth and still make allocation choices that are better than we could without markets.
“Philanthropists face precisely the same problem: how to make better use of limited information to maximize output, in this case, social impact. Considering the dearth of useful tools available to donors today, the solution doesn’t have to be perfect or even all that good, at least at first. It just needs to improve the status quo and get better over time.
“Much of the solution, I believe, lies in finding useful adaptations of market mechanisms that will mitigate the effects of the same lack of reliable and comprehensive information about social sector performance. I would even go so far as to say that social enterprises can’t hope to realize their ‘one day, all children’ visions without a funding allociation system that acts more like a market.
“We can, and indeed do, make incremental improvements in nonprofit funding without market mechanisms. But without markets, I don’t see how we can fix the fragmentation problem or produce transformative social impact, such as ensuring that every child in America has a good education. The problems we face are too big and have too many moving parts to ignore the self-organizing dynamics of market economics. As Thomas Friedman said about the need to impose a carbon tax at a time of falling oil prices, ‘I’ve wracked my brain trying to think of ways to retool America around clean-power technologies without a price signal–i.e., a tax–and there are no effective ones.”

p. 199:
“Prices enable financial markets to work the way nonprofit capital markets should–by sending informative signals about the most effective organizations so that money will flow to them naturally..”

p. 200:
[Quotes Kurtzman citing De Soto on the mystery of capital. Also see p. 209, below.]
“‘Solve the mystery of capital and you solve many seemingly intractable problems along with it.'”
[That’s from page 69 in Kurtzman, 2002.]

p. 201:
[Goldberg says he’s quoting Daniel Yankelovich here, but the footnote does not appear to have anything to do with this quote:]
“‘The first step is to measure what can easily be measured. The second is to disregard what can’t be measured, or give it an arbitrary quantitative value. This is artificial and misleading. The third step is to presume that what can’t be measured easily isn’t very important. This is blindness. The fourth step is to say that what can’t be easily measured really doesn’t exist. This is suicide.'”

Goldberg gives example here of $10,000 invested witha a 10% increase in value, compared with $10,000 put into a nonprofit. “But if the nonprofit makes good use of the money and, let’s say, brings the reading scores of 10 elementary school students up from below grade level to grade level, we can’t say how much my initial investment is ‘worth’ now. I could make the argument that the value has increased because the students have received a demonstrated educational benefit that is valuable to them. Since that’s the reason I made the donation, the achievement of higher scores must have value to me, as well.”

p. 202:
Goldberg wonders whether donations to nonprofits would be better conceived as purchases than investments.

p. 207:
Goldberg quotes Jon Gertner from the March 9, 2008, issue of the New York Times Magazine devoted to philanthropy:

“‘Why shouldn’t the world’s smartest capitalists be able to figure out more effective ways to give out money now? And why shouldn’t they want to make sure their philanthropy has significant social impact? If they can measure impact, couldn’t they get past the resistance that [Warren] Buffet highlighted and finally separate what works from what doesn’t?'”

p. 208:
“Once we abandon the false notions that financial markets are precision instruments for measuring unambiguous phenomena, and that the business and nonproft sectors are based in mutually exclusive principles of value, we can deconstruct the true nature of the problems we need to address and adapt market-like mechanisms that are suited to the particulars of the social sector.
“All of this is a long way (okay, a very long way) of saying that even ordinal rankings of nonprofit investments can have tremendous value in choosing among competing donation opportunities, especially when the choices are so numerous and varied. If I’m a social investor, I’d really like to know which nonprofits are likely to produce ‘more’ impact and which ones are likely to produce ‘less.'”

“It isn’t necessary to replicate the complex working of the modern stock markets to fashion an intelligent and useful nonprofit capital allocation mechanism. All we’re looking for is some kind of functional indication that would (1) isolate promising nonprofit investments from among the confusing swarm of too many seemingly worthy social-purpose organizations and (2) roughly differentiate among them based on the likelihood of ‘more’ or ‘less’ impact. This is what I meant earlier by increasing [p. 209] signals and decreasing noise.”

p. 209:
Goldberg apparently didn’t read De Soto, as he says that the mystery of capital is posed by Kurtzman and says it is solved via the collective intelligence and wisdom of crowds. This completely misses the point of the crucial value that transparent representations of structural invariance hold in market functionality. Goldberg is apparently offering a loose kind of market for which there is an aggregate index of stocks for nonprofits that are built up from their various ordinal performance measures. I think I find a better way in my work, building more closely from De Soto (Fisher, 2002, 2003, 2005, 2007, 2009a, 2009b).

p. 231:
Goldberg quotes Harvard’s Allen Grossman (1999) on the cost-benefit boundaries of more effective nonprofit capital allocation:

“‘Is there a significant downside risk in restructuring some portion of the philanthropic capital markets to test the effectiveness of performance driven philanthropy? The short answer is, ‘No.’ The current reality is that most broad-based solutions to social problems have eluded the conventional and fragmented approaches to philanthropy. It is hard to imagine that experiments to change the system to a more performance driven and rational market would negatively impact the effectiveness of the current funding flows–and could have dramatic upside potential.'”

p. 232:
Quotes Douglas Hubbard’s How to Measure Anything book that Stenner endorsed, and Linacre and I didn’t.

p. 233:
Cites Stevens on the four levels of measurement and uses it to justify his position concerning ordinal rankings, recognizing that “we can’t add or subtract ordinals.”

pp. 233-5:
Justifies ordinal measures via example of Google’s PageRank algorithm. [I could connect from here using Mary Garner’s (2009) comparison of PageRank with Rasch.]

p. 236:
Goldberg tries to justify the use of ordinal measures by citing their widespread use in social science and health care. He conveniently ignores the fact that virtually all of the same problems and criticisms that apply to philanthropic capital markets also apply in these areas. In not grasping the fundamental value of De Soto’s concept of transferable and transparent representations, and in knowing nothing of Rasch measurement, he was unable to properly evaluate to potential of ordinal data’s role in the formation of philanthropic capital markets. Ordinal measures aren’t just not good enough, they represent a dangerous diversion of resources that will be put into systems that take on lives of their own, creating a new layer of dysfunctional relationships that will be hard to overcome.

p. 261 [Goldberg shows here his complete ignorance about measurement. He is apparently totally unaware of the work that is in fact most relevant to his cause, going back to Thurstone in 1920s, Rasch in the 1950s-1970s, and Wright in the 1960s to 2000. Both of the problems he identifies have long since been solved in theory and in practice in a wide range of domains in education, psychology, health care, etc.]:
“Having first studied performance evaluation some 30 years ago, I feel confident in saying that all the foundational work has been done. There won’t be a ‘eureka!’ breakthrough where someone finally figures out the one true way to guage nonprofit effectiveness.
“Indeed, I would venture to say that we know virtually everything there is to know about measuring the performance of nonprofit organizations with only two exceptions: (1) How can we compare nonprofits with different missions or approaches, and (2) how can we make actionable performance assessments common practice for growth-ready mid-caps and readily available to all prospective donors?”

p. 263:
“Why would a social entrepreneur divert limited resources to impact assessment if there were no prospects it would increase funding? How could an investor who wanted to maximize the impact of her giving possibly put more golden eggs in fewer impact-producing baskets if she had no way to distinguish one basket from another? The result: there’s no performance data to attract growth capital, and there’s no growth capital to induce performance measurement. Until we fix that Catch-22, performance evaluation will not become an integral part of social enterprise.”

pp. 264-5:
Long quotation from Ken Berger at Charity Navigator on their ongoing efforts at developing an outcome measurement system. [wpf, 8 Nov 2009: I read the passage quoted by Goldberg in Berger’s blog when it came out and have been watching and waiting ever since for the new system. wpf, 8 Feb 2012: The new system has been online for some time but still does not include anything on impacts or outcomes. It has expanded from a sole focus on financials to also include accountability and transparency. But it does not yet address Goldberg’s concerns as there still is no way to tell what works from what doesn’t.]

p. 265:
“The failure of the social sector to coordinate independent assets and create a whole that exceeds the sum of its parts results from an absence of.. platform leadership’: ‘the ability of a company to drive innovation around a particular platform technology at the broad industry level.’ The object is to multiply value by working together: ‘the more people who use the platform products, the more incentives there are for complement producers to introduce more complementary products, causing a virtuous cycle.'” [Quotes here from Cusumano & Gawer (2002). The concept of platform leadership speaks directly to the system of issues raised by Miller & O’Leary (2007) that must be addressed to form effective HSN capital markets.]

p. 266:
“…the nonprofit sector has a great deal of both money and innovation, but too little available information about too many organizations. The result is capital fragmentation that squelches growth. None of the stakeholders has enough horsepower on its own to impose order on this chaos, but some kind of realignment could release all of that pent-up potential energy. While command-and-control authority is neither feasible nor desirable, the conditions are ripe for platform leadership.”

“It is doubtful that the IMPEX could amass all of the resources internally needed to build and grow a virtual nonprofit stock market that could connect large numbers of growth-capital investors with large numbers of [p. 267] growth-ready mid-caps. But it might be able to convene a powerful coalition of complementary actors that could achieve a critical mass of support for performance-based philanthropy. The challenge would be to develop an organization focused on filling the gaps rather than encroaching on the turf of established firms whose participation and innovation would be required to build a platform for nurturing growth of social enterprise..”

p. 268-9:
Intermediated nonprofit capital market shifts fundraising burden from grantees to intermediaries.

p. 271:
“The surging growth of national donor-advised funds, which simplify and reduce the transaction costs of methodical giving, exemplifies the kind of financial innovation that is poised to leverage market-based investment guidance.” [President of Schwab Charitable quoted as wanting to make charitable giving information- and results-driven.]

p. 272:
Rating agencies and organizations: Charity Navigator, Guidestar, Wise Giving Alliance.
Online donor rankings: GlobalGiving, GreatNonprofits, SocialMarkets
Evaluation consultants: Mathematica

Google’s mission statement: “to organize the world’s information and make it universally accessible and useful.”

p. 273:
Exhibit 9.4 Impact Index Whole Product
Image of stakeholders circling IMPEX:
Trading engine
Listed nonprofits
Data producers and aggregators
Trading community
Researchers and analysts
Investors and advisors
Government and business supporters

p. 275:
“That’s the starting point for replication [of social innovations that work]: finding and funding; matching money with performance.”

[WPF bottom line: Because Goldberg misses De Soto’s point about transparent representations resolving the mystery of capital, he is unable to see his way toward making the nonprofit capital markets function more like financial capital markets, with the difference being the focus on the growth of human, social, and natural capital. Though Goldberg intuits good points about the wisdom of crowds, he doesn’t know enough about the flaws of ordinal measurement relative to interval measurement, or about the relatively easy access to interval measures that can be had, to do the job.]

References

Cusumano, M. A., & Gawer, A. (2002, Spring). The elements of platform leadership. MIT Sloan Management Review, 43(3), 58.

De Soto, H. (2000). The mystery of capital: Why capitalism triumphs in the West and fails everywhere else. New York: Basic Books.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2003). Measurement and communities of inquiry. Rasch Measurement Transactions, 17(3), 936-8 [http://www.rasch.org/rmt/rmt173.pdf].

Fisher, W. P., Jr. (2005). Daredevil barnstorming to the tipping point: New aspirations for the human sciences. Journal of Applied Measurement, 6(3), 173-9 [http://www.livingcapitalmetrics.com/images/FisherJAM05.pdf].

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-3 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In M. Wilson, K. Draney, N. Brown & B. Duckor (Eds.), Advances in Rasch Measurement, Vol. Two (p. in press [http://www.livingcapitalmetrics.com/images/BringingHSN_FisherARMII.pdf]). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2009b, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement (Elsevier), 42(9), 1278-1287.

Garner, M. (2009, Autumn). Google’s PageRank algorithm and the Rasch measurement model. Rasch Measurement Transactions, 23(2), 1201-2 [http://www.rasch.org/rmt/rmt232.pdf].

Grossman, A. (1999). Philanthropic social capital markets: Performance driven philanthropy (Social Enterprise Series 12 No. 00-002). Harvard Business School Working Paper.

Kotter, J. (1996). Leading change. Cambridge, Massachusetts: Harvard Business School Press.

Kurtzman, J. (2002). How the markets really work. New York: Crown Business.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-34.

Feminist Diffractions, Stochastic Resonance, and Education, Revisited

May 25, 2015

Lehrer (2015) offers an insightful commentary on Saxe et al’s (2015) recent article in Human Development that prompts some observations.

Two areas for questions and comments come to mind. The first has to do with construing the development and revision of new ways of understanding as contested, which implicitly aligns with Latour’s (1987, pp. 89, 93) sense of the way new constructs are subjected to tests of strength. Haraway (1996) makes an important point in her critique of what she sees as the overly masculinist metaphors of heroic competition and (perhaps not so) sublimated violence in these contests. Her sense of “feminist diffractions” stops short of what I have in mind, but opens the door to an alternative approach to what Lehrer calls the “close coupling of definitions with the development and revision of new concepts and ways of understanding.”

Galison (1997, pp. 843-844), for instance, seeks a metaphor capable of expressing what happens in the conceptual, practical, and argumentative contests between different communities of scientists (instrumentalist technicians, theoreticians, and experimentalists). He wants a metaphor that does justice to the disunified chaos and disorder one finds in the relationships between these different groups, which paradoxically results in such productive and coherent innovations. He recalls Peirce’s and Wittgenstein’s metaphors of cables and threads that take their strength from being intertwined from smaller wires and bits of fiber but finds these images too mechanical for his purposes. He wants something more akin to amorphous semiconductors or laminated materials that can fail microscopically but hold macroscopically better than more structurally homogenous materials.

Berg and Timmermans (2000, pp. 55-56) make a similar observation in their study of the constitution of universalities in medical fields:

“In order for a statistical logistics to enhance precise decision making, it has to incorporate imprecision; in order to be universal, it has to carefully select its locales. … Paradoxically, then, the increased stability and reach of this network was not due to more (precise) instructions: the protocol’s logistics could thrive only by parasitically drawing upon its own disorder.”

The general problem is taken up by Ricoeur (1992, p. 289), who raises the notion of “universals in context or of potential or inchoate universals” that embody the paradox in which

“on the one hand, one must maintain the universal claim attached to a few values where the universal and the historical intersect, and on the other hand, one must submit this claim to discussion, not on a formal level, but on the level of the convictions incorporated in concrete forms of life.”

To repeat another theme that comes up again and again in this blog, this kind of noise-induced order sounds like the phenomenon of stochastic resonance (Fisher, 1992, 2011). The importance of stochastic resonance is that it opens up a way to connect the phenomena of emergent understanding with measurement, both at the local individual and general systemic levels.

This is the crux of some very important issues in the philosophy of science and in philosophy generally. Haraway (1996, pp. 439-440), for instance, points out that “embedded relationality is the prophylaxis for both relativism and transcendence.” And Golinski (2012, p. 35) similarly says, “Practices of translation, replication, and metrology have taken the place of the universality that used to be assumed as an attribute of singular science.”

A start in the direction of embedded relationality, translation, replication, and metrology in education is apparent, for instance, in work that enables teachers to usefully relate individual student performances to general learning progressions, connecting instructional applications with accountability (Fisher & Wilson, 2015; Lehrer, 2013; Lehrer & Jones, 2014; Wilson, 2004). As Lehrer (2015, p. 49) says about the Saxe et al. work, “Recurrent forms of mathematical practice enabled the authors to create compelling trajectories of collective activity and learning over time while preserving the contributions of individual development.”

The second of the two topics I’d like to address comes up here in the closing paragraph of his short commentary, where Lehrer says a “hoped-for future innovation would make it possible to visualize individual and collective trajectories simultaneously.” Though future improvements can certainlty be expected, visualizations of individual and collective trajectories for growth in reading are already being recognized in both educational and metrological contexts (Stenner, Swartz, Hanlon, & Emerson, 2012; Stenner & Fisher, 2013, p. 4) for their potential to serve as the media of an embedded relationality capable of undercutting both the relativism of uncontrolled local variation and the universalist pretensions often built into accountability programs.

With emerging recognition of the potential Rasch’s stochastic approaches to construct mapping (Bond & Fox, 2007; Wilson, 2005) offer in the way of metrological translation networks (Mari & Wilson, 2013; Pendrill, 2014; Pendrill & Fisher, 2015; Fisher & Wilson, 2015; Stenner & Fisher, 2013; Wilson, 2013; Wilson, Mari, Maul, & Torres Irribarra 2015), there are good reasons to expect significant new kinds of progress in fields that rely on assessments and surveys for outcome measurement and management.

References

Berg, M.,& Timmermans, S. (2000). Order and their others: On the constitution of universalities in medical work. Configurations, 8(1), 31-61.

Bond, T., & Fox, C. (2007). Applying the Rasch model: Fundamental measurement in the human sciences, 2d edition. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Fisher, W. P., Jr. (1992). Stochastic resonance and Rasch measurement. Rasch Measurement Transactions, 5(4), 186-187 [http://www.rasch.org/rmt/rmt54k.htm].

Fisher, W. P., Jr. (2011). Stochastic and historical resonances of the unit in physics and psychometrics. Measurement: Interdisciplinary Research & Perspectives, 9, 46-50.

Fisher, W. P., Jr., & Stenner, A. J. (2015). The role of metrology in mobilizing and mediating the language and culture of scientific facts. Journal of Physics Conference Series, 588(012043).

Fisher, W. P., Jr., & Wilson, M. (2015). Building a productive trading zone in educational assessment research and practice. Pensamiento Educativo, in review.

Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.

Golinski, J. (2012). Is it time to forget science? Reflections on singular science and its history. Osiris, 27(1), 19-36.

Haraway, D. J. (1996). Modest witness: Feminist diffractions in science studies. In P. Galison & D. J. Stump (Eds.), The disunity of science: Boundaries, contexts, and power (pp. 428-441). Stanford, California: Stanford University Press.

Latour, B. (1987). Science in action: How to follow scientists and engineers through society. New York: Harvard University Press.

Lehrer, R. (2013, April 29). (Chair). In A learning progression emerges in a trading zone of professional community and identity. American Educational Research Association, Division C on Learning and Instruction, Section 2b on Learning and Motivation in Social and Cultural Contexts, San Francisco, CA.

Lehrer, R., & Jones, S. (2014, 2 April). Construct maps as boundary objects in the trading zone. In W. P. Fisher Jr. (Chair), Session 3-A: Rating Scales and Partial Credit, Theory and Applied. International Objective Measurement Workshop, Philadelphia, PA.

Lehrer, R. (2015). Designing for development: Commentary on Saxe, de Kirby, Kang, Le and Schneider. Human Development, 58(1), 45-49.

Mari, L., & Wilson, M. (2013). A gentle introduction to Rasch measurement models for metrologists. Journal of Physics Conference Series, 459(1), http://iopscience.iop.org/1742-6596/459/1/012002/pdf/1742-6596_459_1_012002.pdf.

Pendrill, L. (2014). Man as a measurement instrument [Special Feature]. NCSLi Measure: The Journal of Measurement Science, 9(4), 22-33.

Pendrill, L., & Fisher, W. P., Jr. (2015). Counting and quantification: Comparing psychometric and metrological perspectives on visual perceptions of number. Measurement, 71, 46-55.

Ricoeur, P. (1992). Oneself as another. Chicago, Illinois: University of Chicago Press.

Saxe, G. B., de Kirby, K., Kang, B., Le, M., & Schneider, A. (2015). Studying cognition through time in a classroom community: The interplay between “everyday” and “scientific” concepts. Human Development, 58(1), 5-44.

Stenner, A. J., & Fisher, W. P., Jr. (2013). Metrological traceability in the social sciences: A model from reading measurement. Journal of Physics: Conference Series, 459(012025), http://iopscience.iop.org/1742-6596/459/1/012025.

Stenner, A. J., Swartz, C., Hanlon, S., & Emerson, C. (2012, February). Personalized learning platforms. Presented at the Pearson Global Research Conference, Fremantle, Western Australia.

Wilson, M. (Ed.). (2004). National Society for the Study of Education Yearbooks. Vol. 103, Part II: Towards coherence between classroom assessment and accountability. Chicago, Illinois: University of Chicago Press.

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Wilson, M. R. (2013). Using the concept of a measurement system to characterize measurement models used in psychometrics. Measurement, 46, 3766-3774.

 

Living Capital Metrics for Financial and Sustainability Accounting Standards

May 1, 2015

I was very happy a few days ago to come across Jane Gleeson-White’s new book, Six Capitals, or Can Accountants Save the Planet? Rethinking Capitalism for the 21st Century. The special value for me in this book comes in the form of an accessible update on what’s been going on in the world of financial accounting standards. Happily, there’s been a lot of activity (check out, for instance, Amato & White, 2013; Rogers & White, 2015). Less fortunately, the activity seems to be continuing to occur in the same measurement vacuum it always has, despite my efforts in this blog to broaden the conversation to include rigorous measurement theory and practice.

But to back up a bit, recent events around sustainability metric standards don’t seem to be connected to previous controversies around financial standards and economic modeling, which were more academically oriented to problems of defining and expressing value. Gleeson-White doesn’t cite any of the extensive literature in those areas (for instance, Anielski, 2007; Baxter, 1979; Economist, 2010; Ekins, 1992, 1999; Ekins, Dresner, & Dahlstrom, 2008; Ekins, Hillman, & Hutchins, 1992; Ekins & Voituriez, 2009; Fisher, 2009b, 2009c, 2011; Young & Williams, 2010). Valuation is still a problem, of course, as is the analogy between accounting standards and scientific standards (Baxter, 1979). But much of the sensitivity of the older academic debate over accounting standards seems to have been lost in the mad, though well-intentioned, rush to devise metrics for the traditionally externalized nontraditional forms of capital.

Before addressing the thousands of metrics in circulation and the science that needs to be brought to bear on them (the ongoing theme of posts in this blog), some attention to terminology is important. Gleeson-White refers to six capitals (manufactured, liquid, intellectual, human, social, and natural), in contrast with Ekins (1992; Ekins, et al., 2008), who describes four (manufactured, human, social, and natural). Gleeson-White’s liquid capital is cash money, which can be invested in capital (a means of producing value via ongoing services) and which can be extracted as a return on capital, but is not itself capital, as is shown by the repeated historical experience in many countries of printing money without stimulating economic growth and producing value. Of her remaining five forms of capital, intellectual capital is a form of social capital that can satisfactorily be categorized alongside the other forms of organization-level properties and systems involving credibility and trust.

On pages 209-227, Gleeson-White takes up questions relevant to the measurement and information quality topics of this blog. The context here is informed by the International Integrated Reporting Council’s (IIRC) December 2013 framework for accounting reports integrating all forms of capital (Amato & White, 2013), and by related efforts of the Sustainability Accounting Standards Board (SASB) (Rogers & White, 2015). Following the IIRC, Gleeson-White asserts that

“Not all the new capitals can be quantified, yet or perhaps ever–for example, intellectual, human and social capital, much of natural capital–and so integrated reports are not expected to provide quantitative measures of each of the capitals.”

Of course, this opinion flies in the face of established evidence and theory accepted by both metrologists (weights and measures standards engineers and physicists) and psychometricians as to the viability of rigorous measurement standards for the outcomes of education, health care, social services, natural resource management, etc. (Fisher, 2009b, 2011, 2012a, 2012b; Fisher & Stenner, 2011a, 2013, 2015; Fisher & Wilson, 2015; Mari & Wilson, 2013; Pendrill, 2014; Pendrill & Fisher, 2013, 2015; Wilson, 2013; Wilson, Mari, Maul, & Torres Irribarra, 2015). Pendrill (2014, p. 26), an engineer, physicist, and past president of the European Association of National Metrology Institutes, for instance, states that “The Rasch approach…is not simply a mathematical or statistical approach, but instead [is] a specifically metrological approach to human-based measurement.” As is repeatedly shown in this blog, access to scientific measures sets the stage for a dramatic transformation of the potential for succeeding in the goal of rethinking capitalism.

Next, Gleeson-White’s references to several of the six capitals as the “living” capitals (p. 193) is a literal reference to the fact that human, social, and natural capital are all carried by people, organizations/communities, and ecosystems. The distinction between dead and living capital elaborated by De Soto (2000) and Fisher (2002, 2007, 2010b, 2011), which involves making any form of capital fungible by representing it in abstract forms negotiable in banks and courts of law, is not taken into account, though this would seem to be a basic requirement that must be fulfilled before the rethinking of capitalism could said to have been accomplished.

Gleeson-White raises the pointed question as to exactly how integrated reporting is supposed to provoke positive growth in the nontraditional forms of capital. The concept of an economic framework integrating all forms of capital relative to the profit motive, as described in Ekins’ work, for instance, and as is elaborated elsewhere in this blog, seems just over the horizon, though repeated mention is made of natural capitalism (Hawken, Lovins, & Lovins, 1999). The posing of the questions provided by Gleeson-White (pp. 216-217) is priceless, however:

“…given integrated reporting’s purported promise to contribute to sustainable development by encouraging more efficient resource allocation, how might it actually achieve this for natural and social capitals on their own terms? It seems integrated reporting does nothing to address a larger question of resource allocation….”

“To me the fact that integrated reporting cannot address such questions suggests that as with the example of human capital, its promise to foster efficient resource allocation pertains only to financial capital and not to the other capitals. If we accept that the only way to save our societies and planet is to reconceive them in terms of capital, surely the efficient valuing and allocation of all six capitals must lie at the heart of any economics and accounting for the planet’s scarce resources in the twenty-first century.
“There is a logical inconsistency here: integrated reporting might be the beginning of a new accounting paradigm, but for the moment it is being practiced by an old-paradigm corporation: essentially, one obliged to make a return on financial capital at the cost of the other capitals.”

The goal requires all forms of capital to be integrated into the financial bottom line. Where accounting for manufactured capital alone burns living capital resources for profit, a comprehensive capital accounting framework defines profit in terms of reduced waste. This is a powerful basis for economics, as waste is the common root cause of human suffering, social discontent and environmental degradation (Hawken, Lovins, & Lovins, 1999).

Multiple bottom lines are counter-productive, as they allow managers the option of choosing which stakeholder group to satisfy, often at the expense of the financial viability of the firm (Jensen, 2001; Fisher, 2010a). Economic sustainability requires that profits be legally, morally, and scientifically contingent on a balance of powers distributed across all forms of capital. Though the devil will no doubt lurk in the details, there is increasing evidence that such a balance of powers can be negotiated.

A key point here not brought up by Gleeson-White concerns the fact that markets are not created by exchange activity, but rather by institutionalized rules, roles, and responsibilities (Miller & O’Leary, 2007) codified in laws, mores, technologies, and expectations. Translating historical market-making activities as they have played out relative to manufactured capital in the new domains of human, social, and natural capital faces a number of significant challenges, adapting to a new way of thinking about tests, assessments, and surveys foremost among them (Fisher & Stenner, 2011b).

One of the most important contributions advanced measurement theory and practice (Rasch, 1960; Wright, 1977; Andrich, 1988, 2004; Fisher & Wright, 1994; Wright & Stone, 1999; Bond & Fox, 2007; Wilson, 2005; Engelhard, 2012; Stenner, Fisher, Stone, & Burdick, 2013) can make to the process of rethinking capitalism involves the sorting out of the myriad metrics that have erupted in the last several years. Gleeson-White (p. 223) reports, for instance, that the Bloomberg financial information network now has over 750 ESG (Environmental, Social, Governance) data fields, which were extracted from reports provided by over 5,000 companies in 52 countries.  Similarly, Rogers and White (2015) say that

“…today there are more than 100 organizations offering more than 400 corporate sustainability ratings products that assess some 50,000 companies on more than 8,000 metrics of environmental, social and governance (ESG) performance.”

As is also the case with the UN Millennium Development Goals (Fisher, 2011b), the typical use of these metrics as single-item “quantities” is based in counts of relevant events. This procedure misses the basic point that counts of concrete things in the world are not measures. Is it not obvious that I can have ten rocks to your two, and you can still have more rock than I do? The same thing applies to any kind of performance ratings, survey responses, or test scores. We assign the same numeric increase to every addition of one more count, but hardly anyone experimentally tests the hypothesis that the counts all work together to measure the same thing. Those who think there’s no need for precision science in this context are ignoring the decades of successful and widespread technical work in this area, at their own risk.

The repetition of history here is fascinating. As Ashworth (2004, p. 1,314) put it, historically, “The requirements of increased trade and the fiscal demands of the state fuelled the march toward a regular form of metrology.” For instance, in 1875 it was noted that “the existence of quantitative correlations between the various forms of energy, imposes upon men of science the duty of bringing all kinds of physical quantity to one common scale of comparison” (Everett, 1875, p. 9). The moral and economic  value of common scales was recognized during the French revolution, when, Alder (2002, p. 32) documents, it was asked:

“Ought not a single nation have a uniform set of measures, just as a soldier fought for a single patrie? Had not the Revolution promised equality and fraternity, not just for France, but for all the people of the world? By the same token, should not all of the world’s people use a single set of weights and measures to encourage peaceable commerce, mutual understanding, and the exchange of knowledge? That was the purpose of measuring the world.”

The value of rigorously measuring human, social and natural capital includes meaningfully integrating qualitative substance with quantitative convenience, reduced data volume, augmenting measures with uncertainty and consistency indexes, and the capacity to take missing data into account (making possible instrument equating, item banking, etc.)  In contrast with the usual methods, rigorous science demands that experiments determine which indicators cohere to measure the same thing by repeatedly giving the same values across samples, over time and space, and across subsets of indicators. Beyond such data-based results, advanced theory makes it possible to arrive at explanatory, predictive methods that add a whole new layer of efficiency to the generation of indicators (de Boeck & Wilson, 2004; Stenner, et al., 2013).

Finally, Gleeson-White (pp. 220-221) reports that “In July 2011, the SASB [Sustainability Accounting Standards Board] was launched in the United States to create standardized measures for the new capitals.” “Founded by environmental engineer and sustainability expert Jean Rogers in San Francisco, SASB is creating a full set of industry-specific standards for sustainability accounting, with the aim of making this information more consistent and comparable.” As of May 2014, the SASB vice chair is Mary Schapiro, former SEC chair, and the chairman of SASB is Michael Bloomfield, former mayor of NYC and founder of the financial information empire. The “SASB is developing nonfinancial standards for eighty-nine industries grouped in ten different sectors and aims to have completed this grueling task by February 2015. It is releasing each set of metrics as they are completed.”

Like the SASB and other groups, Gleeson-White (p. 222) reports, Bloomberg

“aims to use its metrics to start ‘standardizing the discourse around sustainability, so we’re all talking about the same things in the same way,’ as Bloomberg’s senior sustainability strategist Andrew Park put it. What companies ‘desperately want,’ he says, is ‘a legitimate voice’ to tell them: ‘This is what you need to do. You exist in this particular sector. Here are the metrics that you need to be reporting out on. So SASB will provide that. And we think that’s important, because that will help clean up the metrics that ultimately the finance community will start using.’
“Bloomberg wants to price environmental, social and governance externalities to legitimize them in the eyes of financial capital.”

Gleeson-White (p. 225) continues, saying

“Bloomberg wants to do more generally what Trucost did for Puma’s natural capital inputs: create standardized measures for the new capitals–such as ecosystem services and social impacts–so that this information can be aggregated and used by investors. Park and Ravenel call the failure to value clean air, water, stable coastlines and other environmental goods ‘as much a failure to measure as it is a market failure per se–one that could be addressed in part by providing these ‘unpriced’ resources with quantitative parameters that would enable their incorporation into market mechanisms. Such mechanisms could then appropriately ‘regulate’ the consumption of those resources.'”

Integrating well-measured living capitals into the context of appropriately configured institutional rules, roles, and responsibilities for efficient markets (Fisher, 2010b) should indeed involve a capacity to price these resources quantitatively, though this capacity alone would likely prove insufficient to the task of creating the markets (Miller & O’Leary, 2007; Williamson, 1981, 1991, 2005). Rasch’s (1960, pp. 110-115) deliberate patterning of his measurement models on the form of Maxwell’s equations for Newton’s Second Law provides a mathematical basis for connecting psychometrics with both geometry and natural laws, as well as with the law of supply and demand (Fisher, 2010c, 2015; Fisher & Stenner, 2013a).

This perspective on measurement is informed by an unmodern or amodern, post-positivist philosophy (Dewey, 2012; Latour, 1990, 1993), as opposed to a modern and positivist, or postmodern and anti-positivist, philosophy (Galison, 1997). The essential difference is that neither a universalist nor a relativist perspective is necessary to the adoption of practices of traceability to metrological standards. Rather, focusing on local, situated, human relationships, as described by Wilson (2004) in education, for instance, offers a way of resolving the false dilemma of that dichotomous contrast. As Golinski (2012, p. 35) puts it, “Practices of translation, replication, and metrology have taken the place of the universality that used to be assumed as an attribute of singular science.” Haraway (1996, pp. 439-440) harmonizes, saying “…embedded relationality is the prophylaxis for both relativism and transcendance.” Latour (2005, pp. 228-229) elaborates, saying:

“Standards and metrology solve practically the question of relativity that seems to intimidate so many people: Can we obtain some sort of universal agreement? Of course we can! Provided you find a way to hook up your local instrument to one of the many metrological chains whose material network can be fully described, and whose cost can be fully determined. Provided there is also no interruption, no break, no gap, and no uncertainty along any point of the transmission. Indeed, traceability is precisely what the whole of metrology is about! No discontinuity allowed, which is just what ANT [Actor Network Theory] needs for tracing social topography. Ours is the social theory that has taken metrology as the paramount example of what it is to expand locally everywhere, all while bypassing the local as well as the universal. The practical conditions for the expansion of universality have been opened to empirical inquiries. It’s not by accident that so much work has been done by historians of science into the situated and material extension of universals. Given how much modernizers have invested into universality, this is no small feat.
“As soon as you take the example of scientific metrology and standardization as your benchmark to follow the circulation of universals, you can do the same operation for other less traceable, less materialized circulations: most coordination among agents is achieved through the dissemination of quasi-standards.”

As Rasch (1980: xx) understood, “this is a huge challenge, but once the problem has been formulated it does seem possible to meet it.” Though some metrologically informed traceability networks have begun to emerge in education and health care (for instance, Fisher & Stenner, 2013, 2015; Stenner & Fisher, 2013), virtually everything remains to be done to make the coordination across stakeholders as fully elaborated as the standards in the natural sciences.

References

Alder, K. (2002). The measure of all things: The seven-year odyssey and hidden error that transformed the world. New York: The Free Press.

Amato, N., & White, S. (2013, December 7). IIRC releases International Integrated Reporting Framework. Journal of Accountancy. Retrieved from http://www.journalofaccountancy.com/news/2013/dec/20139207.html

Andrich, D. (1988). Sage University Paper Series on Quantitative Applications in the Social Sciences. Vol. series no. 07-068: Rasch models for measurement. Beverly Hills, California: Sage Publications.

Andrich, D. (2004, January). Controversy and the Rasch model: A characteristic of incompatible paradigms? Medical Care, 42(1), I-7–I-16.

Andrich, D. (2010). Sufficiency and conditional estimation of person parameters in the polytomous Rasch model. Psychometrika, 75(2), 292-308.

Anielski, M. (2007). The economics of happiness: Building genuine wealth. Gabriola, British Columbia: New Society Publishers.

Ashworth, W. J. (2004, 19 November). Metrology and the state: Science, revenue, and commerce. Science, 306(5700), 1314-1317.

Baxter, W. T. (1979). Accounting standards: Boon or curse? In The Emmanuel Saxe distinguished lectures in accounting. http://newman.baruch.cuny.edu/digital/saxe/saxe_1978/baxter_79.htm.

Bond, T., & Fox, C. (2007). Applying the Rasch model: Fundamental measurement in the human sciences, 2d edition. Mahwah, New Jersey: Lawrence Erlbaum Associates.

De Boeck, P., & Wilson, M. (Eds.). (2004). Explanatory item response models: A generalized linear and nonlinear approach. Statistics for Social and Behavioral Sciences). New York: Springer-Verlag.

De Soto, H. (2000). The mystery of capital: Why capitalism triumphs in the West and fails everywhere else. New York: Basic Books.

Dewey, J. (2012). Unmodern philosophy and modern philosophy (P. Deen, Ed.). Carbondale, Illinois: Southern Illinois University Press.

Editorial. (2010, 10 June). Accounting standards: To FASB or not to FASB? The Economist, http://www.economist.com/node/16319655.

Ekins, P. (1992). A four-capital model of wealth creation. In P. Ekins & M. Max-Neef (Eds.), Real-life economics: Understanding wealth creation (pp. 147-155). London: Routledge.

Ekins, P. (1999). Economic growth and environmental sustainability: The prospects for green growth. New York: Routledge.

Ekins, P., Dresner, S., & Dahlstrom, K. (2008, March/April). The four-capital method of sustainable development evaluation. European Environment, 18(2), 63-80.

Ekins, P., Hillman, M., & Hutchison, R. (1992). The Gaia atlas of green economics (Foreword by Robert Heilbroner). New York: Anchor Books.

Ekins, P., & Voituriez, T. (2009). Trade, globalization and sustainability impact assessment: A critical look at methods and outcomes. London, England: Earthscan Publications Ltd.

Engelhard, G., Jr. (2012). Invariant measurement: Using Rasch models in the social, behavioral, and health sciences. New York: Routledge Academic.

Everett, J. D. (1875). Illustrations of the C. G. S. system of units. London, England: Taylor & Francis.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009a, November 19). Draft legislation on development and adoption of an intangible assets metric system. Retrieved 6 January 2011, from https://livingcapitalmetrics.wordpress.com/2009/11/19/draft-legislation/

Fisher, W. P., Jr. (2009b, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009c). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (Tech. Rep. No. http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC:. National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010a, 22 November). Meaningfulness, measurement, value seeking, and the corporate objective function: An introduction to new possibilities., LivingCapitalMetrics.com, Sausalito, California. Retrieved from http://ssrn.com/abstract=1713467

Fisher, W. P., Jr. (2010b). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital, Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (http://ssrn.com/abstract=2340674).

Fisher, W. P., Jr. (2010c). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics: Conference Series, 238(1), http://iopscience.iop.org/1742-6596/238/1/012016/pdf/1742-6596_238_1_012016.pdf.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2011b). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com. Retrieved 18 January 2011, from Social Science Research Network: http://ssrn.com/abstract=1739386.

Fisher, W. P., Jr. (2012a). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012b, May/June). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2015). A Rasch perspective on the law of supply and demand. Rasch Measurement Transactions, in press.

Fisher, W. P., Jr., Harvey, R. F., & Kilgore, K. M. (1995). New developments in functional assessment: Probabilistic models for gold standards. NeuroRehabilitation, 5(1), 3-25.

Fisher, W. P., Jr., Harvey, R. F., Taylor, P., Kilgore, K. M., & Kelly, C. K. (1995, February). Rehabits: A common language of functional assessment. Archives of Physical Medicine and Rehabilitation, 76(2), 113-122.

Fisher, W. P., Jr., & Stenner, A. J. (2011a, January). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series). Retrieved 12 January 2014, from National Science Foundation: http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36.

Fisher, W. P., Jr., & Stenner, A. J. (2011b, August 31 to September 2). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium, http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf, Jena, Germany.

Fisher, W. P., Jr., & Stenner, A. J. (2013a). On the potential for improved measurement in the human and social sciences. In Q. Zhang & H. Yang (Eds.), Pacific Rim Objective Measurement Symposium 2012 Conference Proceedings (pp. 1-11). Berlin, Germany: Springer-Verlag.

Fisher, W. P., Jr., & Stenner, A. J. (2013b). Overcoming the invisibility of metrology: A reading measurement network for education and the social sciences. Journal of Physics: Conference Series, 459(012024), http://iopscience.iop.org/1742-6596/459/1/012024.

Fisher, W. P., Jr., & Stenner, A. J. (2015). The role of metrology in mobilizing and mediating the language and culture of scientific facts. Journal of Physics Conference Series, 588(012043).

Fisher, W. P., Jr., & Stenner, A. J. (2015). Theory-based metrological traceability in education: A reading measurement network. Measurement, in review.

Fisher, W. P., Jr., & Wilson, M. (2015). Building a productive trading zone in educational assessment research and practice. Pensamiento Educativo, in review.

Fisher, W. P., Jr., & Wright, B. D. (1994). Introduction to probabilistic conjoint measurement theory and applications (W. P. Fisher, Jr., & B. D. Wright, Eds.) [Special issue]. International Journal of Educational Research, 21(6), 559-568.

Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.

Gleeson-White, J. (2015). Six capitals, or can accountants save the planet? Rethinking capitalism for the 21st century. New York: Norton.

Golinski, J. (2012). Is it time to forget science? Reflections on singular science and its history. Osiris, 27(1), 19-36.

Haraway, D. J. (1996). Modest witness: Feminist diffractions in science studies. In P. Galison & D. J. Stump (Eds.), The disunity of science: Boundaries, contexts, and power (pp. 428-441). Stanford, California: Stanford University Press.

Hawken, P., Lovins, A., & Lovins, H. L. (1999). Natural capitalism: Creating the next industrial revolution. New York: Little, Brown, and Co.

Jensen, M. C. (2001, Fall). Value maximization, stakeholder theory, and the corporate objective function. Journal of Applied Corporate Finance, 14(3), 8-21.

Latour, B. (1990). Postmodern? No, simply amodern: Steps towards an anthropology of science. Studies in History and Philosophy of Science, 21(1), 145-71.

Latour, B. (1993). We have never been modern. Cambridge, Massachusetts: Harvard University Press.

Latour, B. (2005). Reassembling the social: An introduction to Actor-Network-Theory. Clarendon Lectures in Management Studies). Oxford, England: Oxford University Press.

Mari, L., & Wilson, M. (2013). A gentle introduction to Rasch measurement models for metrologists. Journal of Physics Conference Series, 459(1), http://iopscience.iop.org/1742-6596/459/1/012002/pdf/1742-6596_459_1_012002.pdf.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-734.

Pendrill, L. (2014, December). Man as a measurement instrument [Special Feature]. NCSLI Measure: The Journal of Measurement Science, 9(4), 22-33.

Pendrill, L., & Fisher, W. P., Jr. (2013). Quantifying human response: Linking metrological and psychometric characterisations of man as a measurement instrument. Journal of Physics: Conference Series, 459, http://iopscience.iop.org/1742-6596/459/1/012057.

Pendrill, L., & Fisher, W. P., Jr. (2015). Counting and quantification: Comparing psychometric and metrological perspectives on visual perceptions of number. Measurement, p. in press. doi: http://dx.doi.org/10.1016/j.measurement.2015.04.010.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Rogers, J., & White, A. (2015, April 28). Focusing corporate sustainability ratings on what matters. Huffington Post. Retrieved from http://www.huffingtonpost.com/jean-rogers/focusing-corporate-sustai_b_7156148.html.

Stenner, A. J., & Fisher, W. P., Jr. (2013). Metrological traceability in the social sciences: A model from reading measurement. Journal of Physics: Conference Series, 459(012025), http://iopscience.iop.org/1742-6596/459/1/012025.

Stenner, A. J., Fisher, W. P., Jr., Stone, M. H., & Burdick, D. S. (2013, August). Causal Rasch models. Frontiers in Psychology: Quantitative Psychology and Measurement, 4(536), 1-14 [doi: 10.3389/fpsyg.2013.00536].

Williamson, O. E. (1981, November). The economics of organization: The transaction cost approach. The American Journal of Sociology, 87(3), 548-577.

Williamson, O. E. (1991). Economic institutions: Spontaneous and intentional governance [Special issue]. Journal of Law, Economics, & Organization: Papers from the Conference on the New Science of Organization, 7, 159-187.

Williamson, O. E. (2005). The economics of governance. American Economic Review, 95(2), 1-18.

Wilson, M. (Ed.). (2004). National Society for the Study of Education Yearbooks. Vol. 103, Part II: Towards coherence between classroom assessment and accountability. Chicago, Illinois: University of Chicago Press.

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Wilson, M. R. (2013). Using the concept of a measurement system to characterize measurement models used in psychometrics. Measurement, 46, 3766-3774.

Wilson, M., Mari, L., Maul, A., & Torres Irribarra, D. (2015). A comparison of measurement concepts across physical science and social science domains: Instrument design, calibration, and measurement. Journal of Physics: Conference Series, 588(012034), http://iopscience.iop.org/1742-6596/588/1/012034.

Wright, B. D. (1977). Solving measurement problems with the Rasch model. Journal of Educational Measurement, 14(2), 97-116 [http://www.rasch.org/memo42.htm].

Wright, B. D. (1999). Fundamental measurement for psychology. In S. E. Embretson & S. L. Hershberger (Eds.), The new rules of measurement: What every educator and psychologist should know (pp. 65-104 [http://www.rasch.org/memo64.htm]). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Wright, B. D., & Stone, M. H. (1999). Measurement essentials. Wilmington, DE: Wide Range, Inc. [http://www.rasch.org/measess/me-all.pdf].

Young, J. J., & Williams, P. F. (2010, August). Sorting and comparing: Standard-setting and “ethical” categories. Critical Perspectives on Accounting, 21(6), 509-521.

HEY GREECE!!! One more time through the basics

May 10, 2012

As the battle between austerity and growth mindsets threatens to freeze into a brittle gridlock, it seems time once again to simplify and repeat some painfully obvious observations.

1. Human, social, and natural capital make up at least 90 percent of the capital under management in the global economy.

2. There is no system of uniform weights and measures for these forms of capital.

3. We manage what we measure; so, lacking proper measures for 90 percent of the capital in the economy, we cannot possibly manage it properly.

4. Measurement theory and practice have advanced to the point that the technical viability of a meaningful, objective, and precise system of uniform units for human, social, and natural capital is no longer an issue.

5. A metric system for intangible assets (human, social, and natural capital) is the infrastructural capacity building project capable of supporting sustainable and responsible growth we are looking for.

6. Individual citizens, philanthropists, entrepreneurs, corporations, NGOs, educators, health care advocates, innovators, researchers, and governments everywhere ought to be focusing intensely on building systems of consensus measures that take full advantage of existing technical means for instrument scaling, equating, adaptive administration, mass customization, growth modeling, data quality assessment, and diagnostic individualized reporting.

7. Uniform impact measurement will make it possible to price outcomes in ways that allow market forces to inform consumers as to where they can obtain the best cost/value relation for the money. In other words, the profit motive will be directly harnessed in growing human, social, and natural capital.

8. Happiness indexes and gross national or domestic authentic wealth products will not obtain any real practical utility until individuals, firms, NGOs, and governments can directly manage their own intangible asset bottom lines.

See other posts in this blog or the links below for more information.

William P. Fisher, Jr., Ph.D.

Research Associate
BEAR Center
Graduate School of Education
University of California, Berkeley
Principal
LivingCapitalMetrics Consulting

We are what we measure.

It’s time we measured what we want to be.

Connect with me on LinkedIn: http://www.linkedin.com/in/livingcapitalmetrics
View my research on my SSRN Author page: http://ssrn.com/author=1090685
Read my blog at https://livingcapitalmetrics.wordpress.com.
See my web site at http://www.livingcapitalmetrics.com.
http://www.rasch.org
Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Comments on the New ANSI Human Capital Investor Metrics Standard

April 16, 2012

The full text of the proposed standard is available here.

It’s good to see a document emerge in this area, especially one with such a broad base of support from a diverse range of stakeholders. As is stated in the standard, the metrics defined in it are a good place to start and in many instances will likely improve the quality and quantity of the information made available to investors.

There are several issues to keep in mind as the value of standards for human capital metrics becomes more widely appreciated. First, in the context of a comprehensively defined investment framework, human capital is just one of the four major forms of capital, the other three being social, natural, and manufactured (Ekins, 1992; Ekins, Dresden, and Dahlstrom, 2008). To ensure as far as possible the long term stability and sustainability of their profits, and of the economic system as a whole, investors will certainly want to expand the range of the available standards to include social and natural capital along with human capital.

Second, though we manage what we measure, investment management is seriously compromised by having high quality scientific measurement standards only for manufactured capital (length, weight, volume, temperature, energy, time, kilowatts, etc.). Over 80 years of research on ability tests, surveys, rating scales, and assessments has reached a place from which it is prepared to revolutionize the management of intangible forms of capital (Fisher, 2007, 2009a, 2009b, 2010, 2011a, 2011b; Fisher & Stenner, 2011a, 2011b; Wilson, 2011; Wright, 1999). The very large reductions in transaction costs effected by standardized metrics in the economy at large (Barzel, 1982; Benham and Benham, 2000) are likely to have a similarly profound effect on the economics of human, social, and natural capital (Fisher, 2011a, 2012a, 2012b).

The potential for dramatic change in the conceptualization of metrics is most evident in the proposed standard in the sections on leadership quality and employee engagement. For instance, in the section on leadership quality, it is stated that “Investors will be able to directly compare all organizations that are using the same vendor’s methodology.” This kind of dependency should not be allowed to stand as a significant factor in a measurement standard. Properly constructed and validated scientific measures, such as those that have been in wide use in education, psychology and health care for several decades (Andrich, 2010; Bezruzcko, 2005; Bond and Fox, 2007; Fisher and Wright, 1994; Rasch, 1960; Salzberger, 2009; Wright, 1999), are equated to a common unit. Comparability should never depend on which vendor is used. Rather, any instrument that actually measures the construct of interest (leadership quality or employee engagement) should do so in a common unit and within an acceptable range of error. “Normalizing” measures for comparability, as is suggested in the standard, means employing psychometric methods that are 50 years out of date and that are far less rigorous and practical than need be. Transparency in measurement means looking through the instrument to the thing itself. If particular instruments color or reshape what is measured, or merely change the meaning of the numbers reported, then the integrity of the standard as a standard should be re-examined.

Third, for investments in human capital to be effectively managed, each distinct aspect of it (motivations, skills and abilities, health) needs to be measured separately, just as height, weight, and temperature are. New technologies have already transformed measurement practices in ways that make the necessary processes precise and inexpensive. Of special interest are adaptively administered precalibrated instruments supporting mass customized—but globally comparable—measures (for instance, see the examples at http://blog.lexile.com/tag/oasis/ and that were presented at the recent Pearson Global Research Conference in Fremantle, Australia http://www.pearson.com.au/marketing/corporate/pearson_global/default.html; also see Wright and Bell 1984, Lunz, Bergstrom, and Gershon, 1994, Bejar, et al., 2003).

Fourth, the ownership of human capital needs clarification and legal status. If we consider each individual to own their abilities, health, and motivations, and to be solely responsible for decisions made concerning the disposition of those properties, then, in accord with their proven measured amounts of each type of human capital, everyone ought to have legal title to a specific number of shares or credits of each type. This may transform employment away from wage-based job classification compensation to an individualized investment-based continuous quality improvement platform. The same kind of legal titling system will, of course, need to be worked out for social and natural capital, as well.

Fifth, given scientific standards for each major form of capital, practical measurement technologies, and legal title to our shares of capital, we will need expanded financial accounting standards and tools for managing our individual and collective investments. Ongoing research and debates concerning these standards and tools (Siegel and Borgia, 2006; Young and Williams, 2010) have yet to connect with the larger scientific, economic, and legal issues raised here, but developments in this direction should be emerging in due course.

Sixth, a number of lingering moral, ethical and political questions are cast in a new light in this context. The significance of individual behaviors and decisions is informed and largely determined by the context of the culture and institutions in which those behaviors and decisions are executed. Many of the morally despicable but not illegal investment decisions leading to the recent economic downturn put individuals in the position of either setting themselves apart and threatening their careers or doing what was best for their portfolios within the limits of the law. Current efforts intended to devise new regulatory constraints are misguided in focusing on ever more microscopically defined particulars. What is needed is instead a system in which profits are contingent on the growth of human, social, and natural capital. In that framework, legal but ultimately unfair practices would drive down social capital stock values, counterbalancing ill-gotten gains and making them unprofitable.

Seventh, the International Vocabulary of Measurement, now in its third edition (VIM3), is a standard recognized by all eight international standards accrediting bodies (BIPM, etc.). The VIM3 (http://www.bipm.org/en/publications/guides/vim.html) and forthcoming VIM4 are intended to provide a uniform set of concepts and terms for all fields that employ measures across the natural and social sciences. A new dialogue on these issues has commenced in the context of the International Measurement Confederation (IMEKO), whose member organizations are the weights and standards measurement institutes from countries around the world (Conference note, 2011). The 2012 President of the Psychometric Society, Mark Wilson, gave an invited address at the September 2011 IMEKO meeting (Wilson, 2011), and a member of the VIM3 editorial board, Luca Mari, is invited to speak at the July, 2012 International Meeting of the Psychometric Society. I encourage all interested parties to become involved in efforts of these kinds in their own fields.

References

Andrich, D. (2010). Sufficiency and conditional estimation of person parameters in the polytomous Rasch model. Psychometrika, 75(2), 292-308.

Barzel, Y. (1982). Measurement costs and the organization of markets. Journal of Law and Economics, 25, 27-48.

Bejar, I., Lawless, R. R., Morley, M. E., Wagner, M. E., Bennett, R. E., & Revuelta, J. (2003, November). A feasibility study of on-the-fly item generation in adaptive testing. The Journal of Technology, Learning, and Assessment, 2(3), 1-29; http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1663.

Benham, A., & Benham, L. (2000). Measuring the costs of exchange. In C. Ménard (Ed.), Institutions, contracts and organizations: Perspectives from new institutional economics (pp. 367-375). Cheltenham, UK: Edward Elgar.

Bezruczko, N. (Ed.). (2005). Rasch measurement in health sciences. Maple Grove, MN: JAM Press.

Bond, T., & Fox, C. (2007). Applying the Rasch model: Fundamental measurement in the human sciences, 2d edition. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Conference note. (2011). IMEKO Symposium: August 31- September 2, 2011, Jena, Germany. Rasch Measurement Transactions, 25(1), 1318.

Ekins, P. (1992). A four-capital model of wealth creation. In P. Ekins & M. Max-Neef (Eds.), Real-life economics: Understanding wealth creation (pp. 147-155). London: Routledge.

Ekins, P., Dresner, S., & Dahlstrom, K. (2008). The four-capital method of sustainable development evaluation. European Environment, 18(2), 63-80.

Fisher, W. P., Jr. (2007). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-3 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009a). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P.. Jr. (2009b). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology.

Fisher, W. P.. Jr. (2010). Rasch, Maxwell’s method of analogy, and the Chicago tradition. In G. Cooper (Chair), https://conference.cbs.dk/index.php/rasch/Rasch2010/paper/view/824. Probabilistic models for measurement in education, psychology, social science and health: Celebrating 50 years since the publication of Rasch’s Probabilistic Models.., University of Copenhagen School of Business, FUHU Conference Centre, Copenhagen, Denmark.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2011b). Measurement, metrology and the coordination of sociotechnical networks. In  S. Bercea (Chair), New Education and Training Methods. International Measurement Confederation (IMEKO), http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24491/ilm1-2011imeko-017.pdf, Jena, Germany.

Fisher, W. P., Jr. (2012a). Measure local, manage global: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. in press). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012b). What the world needs now: A bold plan for new standards. Standards Engineering, 64, in press.

Fisher, W. P., Jr., & Stenner, A. J. (2011a). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series). Retrieved 25 October 2011, from National Science Foundation: http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36.

Fisher, W. P., Jr., & Stenner, A. J. (2011b). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium, http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf, Jena, Germany.

Fisher, W. P., Jr., & Wright, B. D. (Eds.). (1994). Applications of probabilistic conjoint measurement. International Journal of Educational Research, 21(6), 557-664.

Lunz, M. E., Bergstrom, B. A., & Gershon, R. C. (1994). Computer adaptive testing. International Journal of Educational Research, 21(6), 623-634.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Salzberger, T. (2009). Measurement in marketing research: An alternative framework. Northampton, MA: Edward Elgar.

Siegel, P., & Borgia, C. (2006). The measurement and recognition of intangible assets. Journal of Business and Public Affairs, 1(1).

Wilson, M. (2011). The role of mathematical models in measurement: A perspective from psychometrics. In L. Mari (Chair), Plenary lecture. International Measurement Confederation (IMEKO), http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24178/ilm1-2011imeko-005.pdf, Jena, Germany.

Wright, B. D. (1999). Fundamental measurement for psychology. In S. E. Embretson & S. L. Hershberger (Eds.), The new rules of measurement: What every educator and psychologist should know (pp. 65-104 [http://www.rasch.org/memo64.htm]). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Wright, B. D., & Bell, S. R. (1984, Winter). Item banks: What, why, how. Journal of Educational Measurement, 21(4), 331-345 [http://www.rasch.org/memo43.htm].

Young, J. J., & Williams, P. F. (2010, August). Sorting and comparing: Standard-setting and “ethical” categories. Critical Perspectives on Accounting, 21(6), 509-521.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

2011 IMEKO Conference Papers Published Online

January 13, 2012

Papers from the Joint International IMEKO TC1+ TC7+ TC13 Symposium held August 31st to September 2nd,  2011, in Jena, Germany are now available online at http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24575/IMEKO2011_TOC.pdf. The following will be of particular interest to those interested in measurement applications in the social sciences, education, health care, and psychology:

Nikolaus Bezruczko
Foundational Imperatives for Measurement with Mathematical Models
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24419/ilm1-2011imeko-030.pdf

Nikolaus Bezruczko, Shu-Pi C. Chen, Connie Hill, Joyce M. Chesniak
A Clinical Scale for Measuring Functional Caregiving of Children Assisted with Medical Technologies
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24507/ilm1-2011imeko-032.pdf

Stefan Cano, Anne F. Klassen, Andrea L. Pusic, Andrea
From Breast-Q © to Q-Score ©: Using Rasch Measurement to Better Capture Breast Surgery Outcomes
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24429/ilm1-2011imeko-039.pdf

Gordon A. Cooper, William P. Fisher, Jr.
Continuous Quantity and Unit; Their Centrality to Measurement
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24494/ilm1-2011imeko-019.pdf

William P. Fisher, Jr.
Measurement, Metrology and the Coordination of Sociotechnical Networks
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24491/ilm1-2011imeko-017.pdf

William .P Fisher, Jr., A. Jackson Stenner
A Technology Roadmap for Intangible Assets Metrology
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf

Carl V. Granger, Nikolaus Bezruczko
Body, Mind, and Spirit are Instrumental to Functional Health: A Case Study
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24494/ilm1-2011imeko-019.pdf

Thomas Salzberger
The Quantification of Latent Variables in the Social Sciences: Requirements for Scientific Measurement and Shortcomings of Current Procedures
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24417/ilm1-2011imeko-029.pdf

A. Jackson Stenner, Mark Stone, Donald Burdick
How to Model and Test for the Mechanisms that Make Measurement Systems Tick
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24416/ilm1-2011imeko-027.pdf

Mark Wilson
The Role of Mathematical Models in Measurement: A Perspective from Psychometrics
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24178/ilm1-2011imeko-005.pdf

Also of interest will be Karl Ruhm’s plenary lecture and papers from the Fundamentals of Measurement Science session and the Special Session on the Role of Mathematical Models in Measurement:

Karl H. Ruhm
From Verbal Models to Mathematical Models – A Didactical Concept not just in Metrology
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24167/ilm1-2011imeko-002.pdf

Alessandro Giordani, Luca Mari
Quantity and Quantity Value
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24414/ilm1-2011imeko-025.pdf

Eric Benoit
Uncertainty in Fuzzy Scales Based Measurements
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24415/ilm1-2011imeko-020.pdf

Susanne C.N. Töpfer
Application of Mathematical Models in Optical Coordinate Metrology
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24445/ilm1-2011imeko-008.pdf

Giovanni Battista Rossi
Measurement Modelling: Foundations and Probabilistic Approach
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24446/ilm1-2011imeko-009.pdf

Sanowar H. Khan, Ludwik Finkelstein
The Role of Mathematical Modelling in the Analysis and Design of Measurement Systems
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24448/ilm1-2011imeko-010.pdf

Roman Z. Morawski
Application-Oriented Approach to Mathematical Modelling of Measurement Processes
http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24449/ilm1-2011imeko-011.pdf

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Reimagining Capitalism Again, Part II: Scientific Credibility in Improving Information Quality

September 10, 2011

The previous posting here concluded with two questions provoked by a close consideration of a key passage in William Greider’s 2003 book, The Soul of Capitalism. First, how do we create the high quality, solid information markets need to punish and reward relative to ethical and sustainable human, social, and environmental values? Second, what can we learn from the way we created that kind of information for property and manufactured capital? There are good answers to these questions, answers that point in productive directions in need of wide exploration and analysis.

The short answer to both questions is that better, more scientifically rigorous measurement at the local level needs to be implemented in a context of traceability to universally uniform standards. To think global and act local simultaneously, we need an efficient and transparent way of seeing where we stand in the world relative to everyone else. Having measures expressed in comparable and meaningful units is an important part of how we think global while acting local.

So, for markets to punish and reward businesses in ways able to build human, social, and environmental value, we need to be able to price that value, to track returns on investments in it, and to own shares of it. To do that, we need a new intangible assets metric system that functions in a manner analogous to the existing metric system and other weights and measures standards. In the same way these standards guarantee high quality information on volume, weight, thermal units, and volts in grocery stores and construction sites, we need a new set of standards for human abilities, performances, and health; for social trust, commitment, and loyalty; and for the environment’s air and water processing services, fisheries, gene pools, etc.

Each industry needs an instrumentarium of tools and metrics that mediate relationships universally within its entire sphere of production and/or service. The obvious and immediate reaction to this proposal will likely be that this is impossible, that it would have been done by now if it was possible, and that anyone who proposes something like this is simply unrealistic, perhaps dangerously so. So, here we have another reason to add to those given in the June 8, 2011 issue of The Nation (http://www.thenation.com/article/161267/reimagining-capitalism-bold-ideas-new-economy) as to why bold ideas for a new economy cannot gain any traction in today’s political discourse.

So what basis in scientific authority might be found for this audacious goal of an intangible assets metric system? This blog’s postings offer multiple varieties of evidence and argument in this regard, so I’ll stick to more recent developments, namely, last week’s meeting of the International Measurement Confederation (IMEKO) in Jena, Germany. Membership in IMEKO is dominated by physicists, engineers, chemists, and clinical laboratorians who work in private industry, academia, and government weights and measures standards institutes.

Several IMEKO members past and present are involved with one or more of the seven or eight major international standards organizations responsible for maintaining and improving the metric system (the Systeme Internationale des Unites). Two initiatives undertaken by IMEKO and these standards organizations take up the matter at issue here concerning the audacious goal of standard units for human, social, and natural capital.

First, the recently released third edition of the International Vocabulary of Measurement (VIM, 2008) expands the range of the concepts and terms included to encompass measurement in the human and social sciences. This first effort was not well informed as to the nature of widely realized state of the art developments in measurement in education, health care, and the social sciences. What is important is that an invitation to further dialogue has been extended from the natural to the social sciences.

That invitation was unintentionally accepted and a second initiative advanced just as the new edition of the VIM was being released, in 2008. Members of three IMEKO technical committees (TC 1-7-13; those on Measurement Science, Metrology Education, and Health Care) cultivate a special interest in ideas on the human and social value of measurement. At their 2008 meeting in Annecy, France, I presented a paper (later published in revised form as Fisher, 2009) illustrating how, over the previous 50 years and more, the theory and practice of measurement in the social sciences had developed in ways capable of supporting convenient and useful universally uniform units for human, social, and natural capital.

The same argument was then advanced by my fellow University of Chicago alum, Nikolaus Bezruczko, at the 2009 IMEKO World Congress in Lisbon. Bezruczko and I both spoke at the 2010 TC 1-7-13 meeting in London, and last week our papers were joined by presentations from six of our colleagues at the 2011 IMEKO TC 1-7-13 meeting in Jena, Germany. Another fellow U Chicagoan, Mark Wilson, a long time professor in the Graduate School of Education at the University of California, Berkeley, gave an invited address contrasting four basic approaches to measurement in psychometrics, and emphasizing the value of methods that integrate substantive meaning with mathematical rigor.

Examples from education, health care, and business were then elucidated at this year’s meeting in Jena by myself, Bezruczko, Stefan Cano (University of Plymouth, England), Carl Granger (SUNY, Buffalo; paper presented by Bezruczko, a co-author), Thomas Salzberger (University of Vienna, Austria), Jack Stenner (MetaMetrics, Inc., Durham, NC, USA), and Gordon Cooper (University of Western Australia, Crawley, WA, Australia; paper presented by Fisher, a co-author).

The contrast between these presentations and those made by the existing IMEKO membership hinges on two primary differences in focus. The physicists and engineers take it for granted that all instrument calibration involves traceability to metrological reference standards. Dealing as they are with existing standards and physical or chemical materials that usually possess deterministically structured properties, issues of how to construct linear measures from ordinal observations never come up.

Conversely, the social scientists and psychometricians take it for granted that all instrument calibration involves evaluations of the capacity of ordinal observations to support the construction of linear measures. Dealing as they are with data from tests, surveys, and rating scale assessments, issues of how to relate a given instrument’s unit to a reference standard never come up.

Thus there is significant potential for mutually instructive dialogue between natural and social scientists in this context. Many areas of investigation in the natural sciences have benefited from the introduction of probabilistic concepts in recent decades, but there are perhaps important unexplored opportunities for the application of probabilistic measurement, as opposed to statistical, models. By taking advantage of probabilistic models’ special features, measurement in education and health care has begun to realize the benefit of broad generalizations of comparable units across grades, schools, tests, and curricula.

Though the focus of my interest here is in the capacity of better measurement to improve the efficiency of human, social, and natural capital markets, it may turn out that as many or more benefits will accrue in the natural sciences’ side of the conversation as in the social sciences’ side. The important thing for the time being is that the dialogue is started. New and irreversible mutual understandings between natural and social scientists have already been put on the record. It may happen that the introduction of a new supply of improved human, social, and natural capital metrics will help articulate the largely, as yet, unstated but nonetheless urgent demand for them.

Fisher, W. P., Jr. (2009, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Reimagining Capitalism Again, Part I: Reflections on Greider’s Soul of Capitalism

September 10, 2011

In his 2003 book, The Soul of Capitalism, William Greider wrote, “If capitalism were someday found to have a soul, it would probably be located in the mystic qualities of capital itself” (p. 94). The recurring theme in the book is that the resolution of capitalism’s deep conflicts must grow out as organic changes from the roots of capitalism itself.

In the book, Greider quotes Innovest’s Michael Kiernan as suggesting that the goal has to be re-engineering the DNA of Wall Street (p. 119). He says the key to doing this is good reliable information that has heretofore been unavailable but which will make social and environmental issues matter financially. The underlying problems of exactly what solid, high quality information looks like, where it comes from, and how it is created are not stated or examined, but the point, as Kiernan says, is that “the markets are pretty good at punishing and rewarding.” The objective is to use “the financial markets as an engine of reform and positive change rather than destruction.”

This objective is, of course, the focus of multiple postings in this blog (see especially this one and this one). From my point of view, capitalism indeed does have a soul and it is actually located in the qualities of capital itself. Think about it: if a soul is a spirit of something that exists independent of its physical manifestation, then the soul of capitalism is the fungibility of capital. Now, this fungibility is complex and ambiguous. It takes its strength and practical value from the way market exchange are represented in terms of currencies, monetary units that, within some limits, provide an objective basis of comparison useful for rewarding those capable of matching supply with demand.

But the fungibility of capital can also be dangerously misconceived when the rich complexity and diversity of human capital is unjustifiably reduced to labor, when the irreplaceable value of natural capital is unjustifiably reduced to land, and when the trust, loyalty, and commitment of social capital is completely ignored in financial accounting and economic models. As I’ve previously said in this blog, the concept of human capital is inherently immoral so far as it reduces real human beings to interchangeable parts in an economic machine.

So how could it ever be possible to justify any reduction of human, social, and natural value to a mere number? Isn’t this the ultimate in the despicable inhumanity of economic logic, corporate decision making, and, ultimately, the justification of greed? Many among us who profess liberal and progressive perspectives seem to have an automatic and reactionary prejudice of this kind. This makes these well-intentioned souls as much a part of the problem as those among us with sometimes just as well-intentioned perspectives that accept such reductionism as the price of entry into the game.

There is another way. Human, social, and natural value can be measured and made manageable in ways that do not necessitate totalizing reduction to a mere number. The problem is not reduction itself, but unjustified, totalizing reduction. Referring to all people as “man” or “men” is an unjustified reduction dangerous in the way it focuses attention only on males. The tendency to think and act in ways privileging males over females that is fostered by this sense of “man” shortchanges us all, and has happily been largely eliminated from discourse.

Making language more inclusive does not, however, mean that words lose the singular specificity they need to be able to refer to things in the world. Any given word represents an infinite population of possible members of a class of things, actions, and forms of life. Any simple sentence combining words into a coherent utterance then multiplies infinities upon infinities. Discourse inherently reduces multiplicities into texts of limited lengths.

Like any tool, reduction has its uses. Also like any tool, problems arise when the tool is allowed to occupy some hidden and unexamined blind spot from which it can dominate and control the way we think about everything. Critical thinking is most difficult in those instances in which the tools of thinking themselves need to be critically evaluated. To reject reduction uncritically as inherently unjustified is to throw the baby out with the bathwater. Indeed, it is impossible to formulate a statement of the rejection without simultaneously enacting exactly what is supposed to be rejected.

We have numerous ready-to-hand examples of how all reduction has been unjustifiably reduced to one homogenized evil. But one of the results of experiments in communal living in the 1960s and 1970s, as well as of the fall of the Soviet Union, was the realization that the centralized command and control of collectively owned community property cannot compete with the creativity engendered when individuals hold legal title to the fruits of their labors. If individuals cannot own the results of the investments they make, no one makes any investments.

In other words, if everything is owned collectively and is never reduced to individually possessed shares that can be creatively invested for profitable returns, then the system is structured so as to punish innovation and reward doing as little as possible. But there’s another way of thinking about the relation of the collective to the individual. The living soul of capitalism shows itself in the way high quality information makes it possible for markets to efficiently coordinate and align individual producers’ and consumers’ collective behaviors and decisions. What would happen if we could do that for human, social, and natural capital markets? What if “social capitalism” is more than an empty metaphor? What if capital institutions can be configured so that individual profit really does become the driver of socially responsible, sustainable economics?

And here we arrive at the crux of the problem. How do we create the high quality, solid information markets need to punish and reward relative to ethical and sustainable human, social, and environmental values? Well, what can we learn from the way we created that kind of information for property and manufactured capital? These are the questions taken up and explored in the postings in this blog, and in my scientific research publications and meeting presentations. In the near future, I’ll push my reflection on these questions further, and will explore some other possible answers to the questions offered by Greider and his readers in a recent issue of The Nation.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

New Opportunities for Job Creation and Prosperity

August 17, 2011

What can be done to create jobs and revive the economy? There is no simple, easy answer to this question. Creating busywork is nonsense. We need fulfilling occupations that meet the world’s demand for products and services. It is not easy to see how meaningful work can be systematically created on a broad scale. New energy efficiencies may lead to the cultivation of significant job growth, but it may be unwise to put all of our eggs in this one basket.

So how are we to solve this puzzle? What other areas in the economy might be ripe for the introduction of a new technology capable of supporting a wave of new productivity, like computers did in the 1980s, or the Internet in the 1990s? In trying to answer this question, simplicity and elegance are key factors in keeping things at a practical level.

For instance, we know we accomplish more working together as a team than as disconnected individuals. New jobs, especially new kinds of jobs, will have to be created via innovation. Innovation in science and industry is a team sport. So the first order of business in teaming up for job creation is to know the rules of the game. The economic game is played according to the rules of law embodied in property rights, scientific rationality, capital markets, and transportation/communications networks (see William Bernstein’s 2004 book, The Birth of Plenty). When these conditions are met, as they were in Europe and North America at the beginning of the nineteenth century, the stage is set for long term innovation and growth on a broad scale.

The second order of business is to identify areas in the economy that lack one or more of these four conditions, and that could reasonably be expected to benefit from their introduction. Education, health care, social services, and environmental management come immediately to mind. These industries are plagued with seemingly interminable inflationary spirals, which, no doubt, are at least in part caused by the inability of investors to distinguish between high and low performers. Money cannot flow to and reward programs producing superior results in these industries because they lack common product definitions and comparable measures of their results.

The problems these industries are experiencing are not specific to each of them in particular. Rather, the problem is a general one applicable across all industries, not just these. Traditionally, economic thinking focuses on three main forms of capital: land, labor, and manufactured products (including everything from machines, roads, and buildings to food, clothing, and appliances). Cash and credit are often thought of as liquid capital, but their economic value stems entirely from the access they provide to land, labor, and manufactured products.

Economic activity is not really, however, restricted to these three forms of capital. Land is far more than a piece of ground. What are actually at stake are the earth’s regenerative ecosystems, with the resources and services they provide. And labor is far more than a pair of skilled hands; people bring a complex mix of abilities, motivations, and health to bear in their work. Finally, this scheme lacks an essential element: the trust, loyalty, and commitment required for even the smallest economic exchange to take place. Without social capital, all the other forms of capital (human, natural, and manufactured, including property) are worthless. Consistent, sustainable, and socially responsible economic growth requires that all four forms of capital be made accountable in financial spreadsheets and economic models.

The third order of business, then, is to ask if the four conditions laying out the rules for the economic game are met in each of the four capital domains. The table below suggests that all four conditions are fully met only for manufactured products. They are partially met for natural resources, such as minerals, timber, fisheries, etc., but not at all for nature’s air and water purification systems or broader genetic ecosystem services.

 Table

Existing Conditions Relevant to Conceiving a New Birth of Plenty, by Capital Domains

Human

Social

Natural

Manufactured

Property rights

No

No

Partial

Yes

Scientific rationality

Partial

Partial

Partial

Yes

Capital markets

Partial

Partial

Partial

Yes

Transportation & communication networks

Partial

Partial

Partial

Yes

That is, no provisions exist for individual ownership of shares in the total available stock of air and water, or of forest, watershed, estuary, and other ecosystem service outcomes. Nor do any individuals have free and clear title to their most personal properties, the intangible abilities, motivations, health, and trust most essential to their economic productivity. Aggregate statistics are indeed commonly used to provide a basis for policy and research in human, social, and natural capital markets, but falsifiable models of individually applicable unit quantities are not widely applied. Scientifically rational measures of our individual stocks of intangible asset value will require extensive use of these falsifiable models in calibrating the relevant instrumentation.

Without such measures, we cannot know how many shares of stock in these forms of capital we own, or what they are worth in dollar terms. We lack these measures, even though decades have passed since researchers first established firm theoretical and practical foundations for them. And more importantly, even when scientifically rational individual measures can be obtained, they are never expressed in terms of a unit standardized for use within a given market’s communications network.

So what are the consequences for teams playing the economic game? High performance teams’ individual decisions and behaviors are harmonized in ways that cannot otherwise be achieved only when unit amounts, prices, and costs are universally comparable and publicly available. This is why standard currencies and exchange rates are so important.

And right here we have an insight into what we can do to create jobs. New jobs are likely going to have to be new kinds of jobs resulting from innovations. As has been detailed at length in recent works such as Surowiecki’s 2004 book, The Wisdom of Crowds, innovation in science and industry depends on standards. Standards are common languages that enable us to multiply our individual cognitive powers into new levels of collective productivity. Weights and measures standards are like monetary currencies; they coordinate the exchange of value in laboratories and businesses in the same way that dollars do in the US economy.

Applying Bernstein’s four conditions for economic growth to intangible assets, we see that a long term program for job creation then requires

  1. legislation establishing human, social, and natural capital property rights, and an Intangible Assets Metrology System;
  2. scientific research into consensus standards for measuring human, social, and natural capital;
  3. venture capital educational and marketing programs; and
  4. distributed information networks and computer applications through which investments in human, social, and natural capital can be tracked and traded in accord with the rule of law governing property rights and in accord with established consensus standards.

Of these four conditions, Bernstein (p. 383) points to property rights as being the most difficult to establish, and the most important for prosperity. Scientific results are widely available in online libraries. Capital can be obtained from investors anywhere. Transportation and communications services are available commercially.

But valid and verifiable means of representing legal title to privately owned property is a problem often not yet solved even for real estate in many Third World and former communist countries (see De Soto’s 2000 book, The Mystery of Capital). Creating systems for knowing the quality and quantity of educational, health care, social, and environmental service outcomes is going to be a very difficult process. It will not be impossible, however, and having the problem identified advances us significantly towards new economic possibilities.

We need leaders able and willing to formulate audacious goals for new economic growth from ideas such as these. We need enlightened visionaries able to see our potentials from a new perspective, and who can reflect our new self-image back at us. When these leaders emerge—and they will, somewhere, somehow—the imaginations of millions of entrepreneurial thinkers and actors will be fired, and new possibilities will unfold.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Science, Public Goods, and the Monetization of Commodities

August 13, 2011

Though I haven’t read Philip Mirowski’s new book yet (Science-Mart: Privatizing American Science. Cambridge, MA: Harvard University Press, 2011), a statement in the cover blurb given at Amazon.com got me thinking. I can’t help but wonder if there is another way of interpreting neoliberal ideology’s “radically different view of knowledge and discovery: [that] the fruits of scientific investigation are not a public good that should be freely available to all, but are commodities that could be monetized”?

Corporations and governments are not the only ones investing in research and new product development, and they are not the only ones who could benefit from the monetization of the fruits of scientific investigation. Individuals make these investments as well, and despite ostensible rights to private ownership, no individuals anywhere have access to universally comparable, uniformly expressed, and scientifically valid information on the quantity or quality of the literacy, health, community, or natural capital that is rightfully theirs. They accordingly also then do not have any form of demonstrable legal title to these properties. In the same way that corporations have successfully advanced their economic interests by seeing that patent and intellectual property laws were greatly strengthened, so, too, ought individuals and communities advance their economic interests by, first, expanding the scope of weights and measures standards to include intangible assets, and second, by strengthening laws related to the ownership of privately held stocks of living capital.

The nationalist and corporatist socialization of research will continue only as long as social capital, human capital, and natural capital are not represented in the universally uniform common currencies and transparent media that could be provided by an intangible assets metric system. When these forms of capital are brought to economic life in fungible measures akin to barrels, bushels, or kilowatts, then they will be monetized commodities in the full capitalist sense of the term, ownable and purchasable products with recognizable standard definitions, uniform quantitative volumes, and discernable variations in quality. Then, and only then, will individuals gain economic control over their most important assets. Then, and only then, will we obtain the information we need to transform education, health care, social services, and human and natural resource management into industries in which quality is appropriately rewarded. Then, and only then, will we have the means for measuring genuine progress and authentic wealth in ways that correct the insufficiencies of the GNP/GDP indexes.

The creation of efficiently functioning markets for all forms of capital is an economic, political, and moral necessity (see Ekins, 1992 and others). We say we manage what we measure, but very little effort has been put into measuring (with scientific validity and precision in universally uniform and accessible aggregate terms) 90% of the capital resources under management: human abilities, motivations, and health; social commitment, loyalty, and trust; and nature’s air and water purification and ecosystem services (see Hawken, Lovins, & Lovins, 1999, among others). All human suffering, sociopolitical discontent, and environmental degradation are rooted in the same common cause: waste (see Hawken, et al., 1999). To apply lean thinking to removing the wasteful destruction of our most valuable resources, we must measure these resources in ways that allow us to coordinate and align our decisions and behaviors virtually, at a distance, with no need for communicating and negotiating the local particulars of the hows and whys of our individual situations. For more information on these ideas, search “living capital metrics” and see works like the following:

Ekins, P. (1992). A four-capital model of wealth creation. In P. Ekins & M. Max-Neef (Eds.), Real-life economics: Understanding wealth creation (pp. 147-15). London: Routledge.

Fisher, W. P., Jr. (2009). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Hawken, P., Lovins, A., & Lovins, H. L. (1999). Natural capitalism: Creating the next industrial revolution. New York: Little, Brown, and Co.

Latour, B. (1987). Science in action: How to follow scientists and engineers through society. New York: Cambridge University Press.

Latour, B. (2005). Reassembling the social: An introduction to Actor-Network-Theory. (Clarendon Lectures in Management Studies). Oxford, England: Oxford University Press.

Miller, P., & O’Leary, T. (2007). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-34.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.