Archive for the ‘Analogy’ Category

Measuring Values To Apply The Golden Rule

December 29, 2016

Paper presentation 45.20, American Educational Research Association

New Orleans, April 1994

 

Objective

Basing her comments on the writings of Michael Lerner in Tikkun magazine, “Hillary Rodham Clinton speaks appealingly of a political morality based on the Golden Rule,” says Chicago Tribune columnist Clarence Page.  Lerner and Clinton are correct in asserting that we need to rediscover and re-invigorate our spiritual values, though there is nothing new in this assertion, and Page is correct in his opinion that conservative columnists who say religion is spirituality, and that there is therefore nothing in need of re-invigoration, are wrong.  Research on the spiritual dimension of disability, for instance, shows that the quality of spiritual experience has little, if anything, to do with religious church attendance, bible reading, prayer, or the taking of sacraments (Fisher & Pugliese, 1989).

The purpose of this paper is to propose a research program that would begin to prepare the ground in which a political morality based on the Golden Rule might be cultivated.

Theoretical Framework

Implementing a “political morality based on the Golden Rule” requires some way of knowing that what I do unto others is the same as what I would have done unto me. To know this, I need a measuring system that keeps things in proportion by showing what counts as the same thing for different people.  A political morality based on the Golden Rule has got to have some way of identifying when a service or action done unto others is the same as the one done unto me.  In short, application of the Golden Rule requires an empirical basis of comparison, a measuring system that sets up analogies between people’s values and what is valued.  We must be able to say that my values are to one aspect of a situation what yours are to that or another aspect, and that proportions of this kind hold constant no matter which particular persons are addressed and no matter which aspects of the situation are involved.

Technique

Is it possible to measure what people value—politically, socially, economically, spiritually, and culturally—in a way that embodies the Golden Rule? If so, could such a measure be used for realizing the political morality Hillary Rodham Clinton has advocated?  L. L. Thurstone presented methods for successfully revealing the necessary proportions in the 1920s; these were improved upon by the Danish mathematician Georg Rasch in the 1950s.  Thurstone’s and Rasch’s ideas are researched and applied today by Benjamin D. Wright and J. Michael Linacre.  These and other thinkers hold that measurement takes place only when application of the Golden Rule is possible.  That is, measurement is achieved only if someone’s measure does not depend on who is in the group she is measured with, on the particular questions answered or not answered, on who made the measure, on the brand name of the instrument, or on where the measure took place.

Measurement of this high quality is called scale-free because its quantities do not vary according to the particular questions asked (as long as they pertain to the construct of interest); neither do they vary according to the structure or combination of the particular rating scheme(s) employed (rating scale, partial credit, correct/incorrect, true/false, present/absent, involvement of judges, paired comparisons, etc.), or the brand name of the instrument measuring.  All of these requirements must hold if I am to treat a person as I would like to be treated, because if they do not hold, I do not know enough about her values or mine to say whether she’s receiving the treatment I’d prefer in the same circumstance.

In order to make the Golden Rule the basis of a political morality, we need to improve the quality of measurement in every sphere of our lives; after all, politics is more than just what politicians do, it is a basic part of community life.  Even though the technology and methods for high quality measurement in education, sociology, and psychology have existed for decades, researchers have been indifferent to their use.

That indifference may be near an end.  If people get serious about applying the Golden Rule, they are going to come up against a need for rigorous quantitative measurement.  We need to let them know that the tools for the job are available.

Data sources

Miller’s Scale Battery of International Patterns and Norms (SBIPN) (Miller, 1968, 1970, 1973), described in Miller (1983, pp. 462-468), is an instrument that presents possibilities for investigating quantitative relations among value systems.  The instrument is composed of 20 six-point rating scale items involving such cultural norms and patterns as social acceptance, family solidarity, trustfulness, moral code, honesty, reciprocity, class structure, etc.  Each pair of rating scale points (1-2, 3-4, 5-6) is associated with a 15-30 word description; raters judge national values by assigning ratings, where 1 indicates the most acceptance, solidarity, trust, morality, etc., and 6 the least.  Miller (1983, p. 462) reports test-retest correlations of .74 to .97 for the original 15 items on the survey as testing in the United States and Peru.  Validity claims are based on the scale’s ability to distinguish between values of citizens of the United States and Peru, with supporting research comparing values in Argentina, Spain, England, and the United States.

The SBIPN could probably be improved in several ways.  First, individual countries contain so many diverse ethnic groups and subcultures whose value systems are often in conflict that ratings should probably be made of them and not of the entire population.  The geographical location of the ethnic group or subculture rated should also be tracked in order to study regional variations.  Second, Miller contends that raters must have a college degree to be qualified as a SBIPN judge; the complexity of his rating procedure justifies this claim.  In order to simplify the survey and broaden the base of qualified judges, the three groups of short phrases structuring each six-point rating scale should be used as individual items rated on a frequency continuum.

For instance, the following phrases appear in association with ratings of 1 and 2 under social acceptance:

high social acceptance. Social contacts open and nonrestrictive. Introductions not needed for social contacts.  Short acquaintance provides entry into the home and social organizations.

Similar descriptions are associated with the 3-4 (medium social acceptance) and 5-6 (low social acceptance) rating pairs; only one rating from the series of six is assigned, so that a rating of 1 or 2 is assigned only if the judgment is of high social acceptance.  Instead of asking the rater to assign one of two ratings to all six of these statements (breaking apart the two conjunctive phrases), and ignoring the 10-20 phrases associated with the other four rating scale points, each phrase presented on the six-point continuum should be rated separately for the frequency of the indicated pattern or norm.  A four-point rating scale (Almost Always, Frequently, Sometimes, Rarely) should suffice.

Linacre’s (1993, p. 284) graphical presentation of Rasch-based Generalizability Theory indicates that reliability and separation statistics of .92 and 3.4, respectively, can be expected for a 20-item, six-point rating scale survey (Miller’s original format), assuming a measurement standard deviation of one logit.  360 items will be produced if each of the original 20 six-point items can be transformed into 18 four-point items (following the above example’s derivation of six items from one of the three blocks of one item’s descriptive phrases).  If only 250 of these items work to support the measurement effort, Linacre’s graph shows that a reliability of .99 and separation of 10 might be obtained, again assuming a measurement standard deviation of one logit.  Since not all of the survey’s items would probably be administered at once, these estimates are probably high.  The increased number of items, however, would be advantageous for use as an item bank in a computer adapted administration of the survey.

Expected results

Miller’s applications of the SBIPN provide specific indications of what might be expected from the revised form of the survey.  Family solidarity tends to be low, labor assimilated into the prevailing economic system, class consciousness devalued, and moral conduct secularly defined in the United States, in opposition to Colombia and Peru, where family solidarity is high, labor is antagonistic to the prevailing economic system, class structure is rigidly defined, and moral conduct is religiously defined.  At the other extreme, civic participation, work and achievement, societal consensus, children’s independence, and democracy are highly valued in the United States, but considerably less so in Colombia and Peru.

Miller’s presentation of the survey results will be improved on in several ways.  First, construct validity will be examined in terms of the data’s internal consistency (fit analysis) and the conceptual structure delineated by the items.  Second, the definition of interval measurement continua for each ethnic group or subculture measured will facilitate quantitative and qualitative comparisons of each group’s self-image with its public image.  Differences in group perception can be used for critical self-evaluation as well as information crucial for rectifying unjust projections of prejudice.

Scientific importance

One of the most important benefits of this survey could be the opportunity to show that, although different value systems vary in their standards of what counts as acceptable behaviors and attitudes, the procedures by which values are calibrated and people’s personal values are measured do not vary.  That this should turn out to be the case will make it more difficult to justify and maintain hostile prejudices against others whose value systems differ from one’s own.  If people who do not share my values cannot immediately be categorized as godless, heathens, infidels, pagans, unwashed, etc., ie, in the category of the non-classifiable, then I should be less prone to disregard, hate, or fear them, and more able to build a cohesive, healthy, and integrated community with them.

The cultural prejudice structuring this proposal is that increased understanding of others’ values is good; that this prejudice needs to be made explicit and evaluated for its effect on those who do not share it is of great importance.  The possibility of pursuing a quantitative study of value systems may strike some as an area of research that could only be used to dominate and oppress those who do not have the power to defend themselves.  This observation implies that one reason why more rigorous scientific measurement procedures have failed to take hold in the social studies may be because we have unspoken, but nonetheless justifiable, reservations concerning our capacity to employ high quality information responsibly.  Knowledge is inherently dangerous, but a political morality based on the Golden Rule will require nothing less than taking another bite of the apple from the Tree of Knowledge.

 

References

Fisher, William P. & Karen Pugliese. 1989.  Measuring the importance of pastoral care in rehabilitation. Archives of Physical Medicine and Rehabilitation, 70, A-22 [Abstract].

Linacre, J. Michael. 1993. Rasch-based generalizability theory. Rasch Measurement, 7: 283-284.

Miller, Delbert C. 1968. The measurement of international patterns and norms: A tool for comparative research. Southwestern Social Science Quarterly, 48: 531-547.

Miller, Delbert C. 1970. International Community Power Structures: Comparative Studies of Four World Cities. Bloomington: Indiana University Press.

Miller, Delbert C. 1972. Measuring cross national norms: Methodological problems in identifying patterns in Latin America and Anglo-Saxon Cultures.  International Journal of Comparative Sociology, 13(3-4): 201-216.

Miller, Delbert C. 1983. Handbook of Research Design and Social Measurement. 4th ed. New York: Longman.

Advertisements

Externalities are to markets as anomalies are to scientific laws

October 28, 2011

Economic externalities are to efficient markets as any consistent anomaly is relative to a lawful regularity. Government intervention in markets is akin to fudging the laws of physics to explain the wobble in Uranus’ orbit, or to explain why magnetized masses would not behave like wooden or stone masses in a metal catapult (Rasch’s example). Further, government intervention in markets is necessary only as long as efficient markets for externalized forms of capital are not created. The anomalous exceptions to the general rule of market efficiency have long since been shown to themselves be internally consistent lawful regularities in their own right amenable to configuration as markets for human, social and natural forms of capital.

There is an opportunity here for the concise and elegant statement of the efficient markets hypothesis, the observation of certain anomalies, the formulation of new theories concerning these forms of capital, the framing of efficient markets hypotheses concerning the behavior of these anomalies, tests of these hypotheses in terms of the inverse proportionality of two of the parameters relative to the third, proposals as to the uniform metrics by which the scientific laws will be made commercially viable expressions of capital value, etc.

We suffer from the illusion that trading activity somehow spontaneously emerges from social interactions. It’s as though comparable equivalent value is some kind of irrefutable, incontestable feature of the world to which humanity adapts its institutions. But this order of things plainly puts the cart before the horse when the emergence of markets is viewed historically. The idea of fair trade, how it is arranged, how it is recognized, when it is appropriate, etc. varies markedly across cultures and over time.

Yes, “’the price of things is in inverse ratio to the quantity offered and in direct ratio to the quantity demanded’ (Walras 1965, I, 216-17)” (Mirowski, 1988, p. 20). Yes, Pareto made “a direct extrapolation of the path-independence of equilibrium energy states in rational mechanics and thermodynamics” to “the path-independence of the realization of utility” (Mirowski, 1988, p. 21). Yes, as Ehrenfest showed, “an analogy between thermodynamics and economics” can be made, and economic concepts can be formulated “as parallels of thermodynamic concepts, with the concept of equilibrium occupying the central position in both theories” (Boumans, 2005, p. 31).  But markets are built up around these lawful regularities by skilled actors who articulate the rules, embody the roles, and initiate the relationships comprising economic, legal, and scientific institutions. “The institutions define the market, rather than the reverse” (Miller & O’Leary, 2007, p. 710). What we need are new institutions built up around the lawful regularities revealed by Rasch models. The problem is how to articulate the rules, embody the roles, and initiate the relationships.

Noyes (1936, pp. 2, 13; quoted in De Soto 2000, p. 158) provides some useful pointers:

“The chips in the economic game today are not so much the physical goods and actual services that are almost exclusively considered in economic text books, as they are that elaboration of legal relations which we call property…. One is led, by studying its development, to conceive the social reality as a web of intangible bonds–a cobweb of invisible filaments–which surround and engage the individual and which thereby organize society…. And the process of coming to grips with the actual world we live in is the process of objectivizing these relations.”

 Noyes (1936, p. 20, quoted in De Soto 2000, p. 163) continues:

“Human nature demands regularity and certainty and this demand requires that these primitive judgments be consistent and thus be permitted to crystallize into certain rules–into ‘this body of dogma or systematized prediction which we call law.’ … The practical convenience of the public … leads to the recurrent efforts to systematize the body of laws. The demand for codification is a demand of the people to be released from the mystery and uncertainty of unwritten or even of case law.” [This is quite an apt statement of the largely unstated demands of the Occupy Wall Street movement.]

  De Soto (2000, p. 158) explains:

 “Lifting the bell jar [integrating legal and extralegal property rights], then, is principally a legal challenge. The official legal order must interact with extralegal arrangements outside the bell jar to create a social contract on property and capital. To achieve this integration, many other disciplines are of course necessary … [economists, urban planners, agronomists, mappers, surveyers, IT specialists, etc]. But ultimately, an integrated national social contract will be concretized only in laws.”

  “Implementing major legal change is a political responsibility. There are various reasons for this. First, law is generally concerned with protecting property rights. However, the real task in developing and former communist countries is not so much to perfect existing rights as to give everyone a right to property rights–‘meta-rights,’ if you will. [Paraphrasing, the real task in the undeveloped domains of human, social, and natural capital is not so much the perfection of existing rights as it is to harness scientific measurement in the name of economic justice and grant everyone legal title to their shares of their ownmost personal properties, their abilities, health, motivations, and trustworthiness, along with their shares of the common stock of social and natural resources.] Bestowing such meta-rights, emancipating people from bad law, is a political job. Second, very small but powerful vested interests–mostly repre- [p. 159] sented by the countries best commercial lawyers–are likely to oppose change unless they are convinced otherwise. Bringing well-connected and moneyed people onto the bandwagon requires not consultants committed to serving their clients but talented politicians committed to serving their people. Third, creating an integrated system is not about drafting laws and regulations that look good on paper but rather about designing norms that are rooted in people’s beliefs and are thus more likely to be obeyed and enforced. Being in touch with real people is a politician’s task. Fourth, prodding underground economies to become legal is a major political sales job.”

 De Soto continues (p. 159), intending to refer only to real estate but actually speaking of the need for formal legal title to personal property of all kinds, which ought to include human, social, and natural capital:

  “Without succeeding on these legal and political fronts, no nation can overcome the legal apartheid between those who can create capital and those who cannot. Without formal property, no matter how many assets they accumulate or how hard they work, most people will not be able to prosper in a capitalist society. They will continue to remain beyond the radar of policymakers, out of the reach of official records, and thus economically invisible.”

Boumans, M. (2005). How economists model the world into numbers. New York: Routledge.

De Soto, H. (2000). The mystery of capital: Why capitalism triumphs in the West and fails everywhere else. New York: Basic Books.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-34.

Mirowski, P. (1988). Against mechanism: Protecting economics from science. Lanham, MD: Rowman & Littlefield.

Noyes, C. R. (1936). The institution of property. New York: Longman’s Green.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

A New Agenda for Measurement Theory and Practice in Education and Health Care

April 15, 2011

Two key issues on my agenda offer different answers to the question “Why do you do things the way you do in measurement theory and practice?”

First, we can take up the “Because of…” answer to this question. We need to articulate an historical account of measurement that does three things:

  1. that builds on Rasch’s use of Maxwell’s method of analogy by employing it and expanding on it in new applications;
  2. that unifies the vocabulary and concepts of measurement across the sciences into a single framework so far as possible by situating probabilistic models of invariant individual-level within-variable phenomena in the context of measurement’s GIGO principle and data-to-model fit, as distinct from the interactions of group-level between-variable phenomena in the context of statistics’ model-to-data fit; and
  3. that stresses the social, collective cognition facilitated by networks of individuals whose point-of-use measurement-informed decisions and behaviors are coordinated and harmonized virtually, at a distance, with no need for communication or negotiation.

We need multiple publications in leading journals on these issues, as well as one or more books that people can cite as a way of making this real and true history of measurement, properly speaking, credible and accepted in the mainstream. This web site http://ssrn.com/abstract=1698919 is a draft article of my own in this vein that I offer for critique; other material is available on request. Anyone who works on this paper with me and makes a substantial contribution to its publication will be added as co-author.

Second, we can take up the “In order that…” answer to the question “Why do you do things the way you do?” From this point of view, we need to broaden the scope of the measurement research agenda beyond data analysis, estimation, models, and fit assessment in three ways:

  1. by emphasizing predictive construct theories that exhibit the fullest possible understanding of what is measured and so enable the routine reproduction of desired proportionate effects efficiently, with no need to analyze data to obtain an estimate;
  2. by defining the standard units to which all calibrated instruments measuring given constructs are traceable; and
  3. by disseminating to front line users on mass scales instruments measuring in publicly available standard units and giving immediate feedback at the point of use.

These two sets of issues define a series of talking points that together constitute a new narrative for measurement in education, psychology, health care, and many other fields. We and others may see our way to organizing new professional societies, new journals, new university-based programs of study, etc. around these principles.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Consequences of Standardized Technical Effects for Scientific Advancement

January 24, 2011

Note. This is modified from:

Fisher, W. P., Jr. (2004, Wednesday, January 21). Consequences of standardized technical effects for scientific advancement. In  A. Leplège (Chair), Session 2.5A. Rasch Models: History and Philosophy. Second International Conference on Measurement in Health, Education, Psychology, and Marketing: Developments with Rasch Models, The International Laboratory for Measurement in the Social Sciences, School of Education, Murdoch University, Perth, Western Australia.

—————————

Over the last several decades, historians of science have repeatedly produced evidence contradicting the widespread assumption that technology is a product of experimentation and/or theory (Kuhn 1961; Latour 1987; Rabkin 1992; Schaffer 1992; Hankins & Silverman 1999; Baird 2002). Theory and experiment typically advance only within the constraints set by a key technology that is widely available to end users in applied and/or research contexts. Thus, “it is not just a clever historical aphorism, but a general truth, that ‘thermodynamics owes much more to the steam engine than ever the steam engine owed to thermodynamics’” (Price 1986, p. 240).

The prior existence of the relevant technology comes to bear on theory and experiment again in the common, but mistaken, assumption that measures are made and experimentally compared in order to discover scientific laws. History and the logic of measurement show that measures are rarely made until the relevant law is effectively embodied in an instrument (Kuhn 1961; Michell 1999). This points to the difficulty experienced in metrologically fusing (Schaffer 1992, p. 27; Lapré & van Wassenhove 2002) instrumentalists’ often inarticulate, but materially effective, knowledge (know-how) with theoreticians’ often immaterial, but well articulated, knowledge (know-why) (Galison 1999; Baird 2002).

Because technology often dictates what, if any, phenomena can be consistently produced, it constrains experimentation and theorizing by focusing attention selectively on reproducible, potentially interpretable effects, even when those effects are not well understood (Ackermann 1985; Daston & Galison 1992; Ihde 1998; Hankins & Silverman 1999; Maasen & Weingart 2001). Criteria for theory choice in this context stem from competing explanatory frameworks’ experimental capacities to facilitate instrument improvements, prediction of experimental results, and gains in the efficiency with which a phenomenon is produced.

In this context, the relatively recent introduction of measurement models requiring additive, invariant parameterizations (Rasch 1960) provokes speculation as to the effect on the human sciences that might be wrought by the widespread availability of consistently reproducible effects expressed in common quantitative languages. Paraphrasing Price’s comment on steam engines and thermodynamics, might it one day be said that as yet unforeseeable advances in reading theory will owe far more to the Lexile analyzer (Burdick & Stenner 1996) than ever the Lexile analyzer owed reading theory?

Kuhn (1961) speculated that the second scientific revolution of the mid-nineteenth century followed in large part from the full mathematization of physics, i.e., the emergence of metrology as a professional discipline focused on providing universally accessible uniform units of measurement (Roche 1998). Might a similar revolution and new advances in the human sciences follow from the introduction of rigorously mathematical uniform measures?

Measurement technologies capable of supporting the calibration of additive units that remain invariant over instruments and samples (Rasch 1960) have been introduced relatively recently in the human sciences. The invariances produced appear 1) very similar to those produced in the natural sciences (Fisher 1997) and 2) based in the same mathematical metaphysics as that informing the natural sciences (Fisher 2003). Might then it be possible that the human sciences are on the cusp of a revolution analogous to that of nineteenth century physics? Other factors involved in answering this question, such as the professional status of the field, the enculturation of students, and the scale of the relevant enterprises, define the structure of circumstances that might be capable of supporting the kind of theoretical consensus and research productivity that came to characterize, for instance, work in electrical resistance through the early 1880s (Schaffer 1992).

Much could be learned from Rasch’s use of Maxwell’s method of analogy (Nersessian, 2002; Turner, 1955), not just in the modeling of scientific laws but from the social and economic factors that made the regularities of natural phenomena function as scientific capital (Latour, 1987). Quantification must be understood in the fully mathematical sense of commanding a comprehensive grasp of the real root of mathematical thinking. Far from being simply a means of producing numbers, to be useful, quantification has to result in qualitatively transparent figure-meaning relations at any point of use for any one of every different kind of user. Connections between numbers and unit amounts of the variable must remain constant across samples, instruments, time, space, and measurers. Quantification that does not support invariant linear comparisons expressed in a uniform metric available universally to all end users at the point of need is inadequate and incomplete. Such standardization is widely respected in the natural sciences but is virtually unknown in the human sciences, largely due to untested hypotheses and unexamined prejudices concerning the viability of universal uniform measures for the variables measured via tests, surveys, and performance assessments.

Quantity is an effective medium for science to the extent that it comprises an instance of the kind of common language necessary for distributed, collective thinking; for widespread agreement on what makes research results compelling; and for the formation of social capital’s group-level effects. It may be that the primary relevant difference between the case of 19th century physics and today’s human sciences concerns the awareness, widespread among scientists in the 1800s and virtually nonexistent in today’s human sciences, that universal uniform metrics for the variables of interest are both feasible and of great human, scientific, and economic value.

In the creative dynamics of scientific instrument making, as in the making of art, the combination of inspiration and perspiration can sometimes result in cultural gifts of the first order. It nonetheless often happens that some of these superlative gifts, no matter how well executed, are unable to negotiate the conflict between commodity and gift economics characteristic of the marketplace (Baird, 1997; Hagstrom, 1965; Hyde, 1979), and so remain unknown, lost to the audiences they deserve, and unable to render their potential effects historically. Value is not an intrinsic characteristic of the gift; rather, value is ascribed as a function of interests. If interests are not cultivated via the clear definition of positive opportunities for self-advancement, common languages, socio-economic relations, and recruitment, gifts of even the greatest potential value may die with their creators. On the other hand, who has not seen mediocrity disproportionately rewarded merely as a result of intensive marketing?

A central problem is then how to strike a balance between individual or group interests and the public good. Society and individuals are interdependent in that children are enculturated into the specific forms of linguistic and behavioral competence that are valued in communities at the same time that those communities are created, maintained, and reproduced through communicative actions (Habermas, 1995, pp. 199-200). The identities of individuals and societies then co-evolve, as each defines itself through the other via the medium of language. Language is understood broadly in this context to include all perceptual reading of the environment, bodily gestures, social action, etc., as well as the use of spoken or written symbols and signs (Harman, 2005; Heelan, 1983; Ihde, 1998; Nicholson, 1984; Ricoeur, 1981).

Technologies extend language by providing media for the inscription of new kinds of signs (Heelan, 1983a, 1998; Ihde, 1991, 1998; Ihde & Selinger, 2003). Thus, mobility desires and practices are inscribed and projected into the world using the automobile; shelter and life style, via housing and clothing; and communications, via alphabets, scripts, phonemes, pens and paper, telephones, and computers. Similarly, technologies in the form of test, survey, and assessment instruments provide the devices on which we inscribe desires for social mobility, career advancement, health maintenance and improvement, etc.

References

Ackermann, J. R. (1985). Data, instruments, and theory: A dialectical approach to understanding science. Princeton, New Jersey: Princeton University Press.

Baird, D. (1997, Spring-Summer). Scientific instrument making, epistemology, and the conflict between gift and commodity economics. Techné: Journal of the Society for Philosophy and Technology, 2(3-4), 25-46. Retrieved 08/28/2009, from http://scholar.lib.vt.edu/ejournals/SPT/v2n3n4/baird.html.

Baird, D. (2002, Winter). Thing knowledge – function and truth. Techné: Journal of the Society for Philosophy and Technology, 6(2). Retrieved 19/08/2003, from http://scholar.lib.vt.edu/ejournals/SPT/v6n2/baird.html.

Burdick, H., & Stenner, A. J. (1996). Theoretical prediction of test items. Rasch Measurement Transactions, 10(1), 475 [http://www.rasch.org/rmt/rmt101b.htm].

Daston, L., & Galison, P. (1992, Fall). The image of objectivity. Representations, 40, 81-128.

Galison, P. (1999). Trading zone: Coordinating action and belief. In M. Biagioli (Ed.), The science studies reader (pp. 137-160). New York, New York: Routledge.

Habermas, J. (1995). Moral consciousness and communicative action. Cambridge, Massachusetts: MIT Press.

Hagstrom, W. O. (1965). Gift-giving as an organizing principle in science. The Scientific Community. New York: Basic Books, pp. 12-22. (Rpt. in B. Barnes, (Ed.). (1972). Sociology of science: Selected readings (pp. 105-20). Baltimore, Maryland: Penguin Books.

Hankins, T. L., & Silverman, R. J. (1999). Instruments and the imagination. Princeton, New Jersey: Princeton University Press.

Harman, G. (2005). Guerrilla metaphysics: Phenomenology and the carpentry of things. Chicago: Open Court.

Hyde, L. (1979). The gift: Imagination and the erotic life of property. New York: Vintage Books.

Ihde, D. (1998). Expanding hermeneutics: Visualism in science. Northwestern University Studies in Phenomenology and Existential Philosophy). Evanston, Illinois: Northwestern University Press.

Kuhn, T. S. (1961). The function of measurement in modern physical science. Isis, 52(168), 161-193. (Rpt. in The essential tension: Selected studies in scientific tradition and change (pp. 178-224). Chicago, Illinois: University of Chicago Press (Original work published 1977).

Lapré, M. A., & Van Wassenhove, L. N. (2002, October). Learning across lines: The secret to more efficient factories. Harvard Business Review, 80(10), 107-11.

Latour, B. (1987). Science in action: How to follow scientists and engineers through society. New York, New York: Cambridge University Press.

Maasen, S., & Weingart, P. (2001). Metaphors and the dynamics of knowledge. (Vol. 26. Routledge Studies in Social and Political Thought). London: Routledge.

Michell, J. (1999). Measurement in psychology: A critical history of a methodological concept. Cambridge: Cambridge University Press.

Nersessian, N. J. (2002). Maxwell and “the Method of Physical Analogy”: Model-based reasoning, generic abstraction, and conceptual change. In D. Malament (Ed.), Essays in the history and philosophy of science and mathematics (pp. 129-166). Lasalle, Illinois: Open Court.

Price, D. J. d. S. (1986). Of sealing wax and string. In Little Science, Big Science–and Beyond (pp. 237-253). New York, New York: Columbia University Press. p. 240:

Rabkin, Y. M. (1992). Rediscovering the instrument: Research, industry, and education. In R. Bud & S. E. Cozzens (Eds.), Invisible connections: Instruments, institutions, and science (pp. 57-82). Bellingham, Washington: SPIE Optical Engineering Press.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Roche, J. (1998). The mathematics of measurement: A critical history. London: The Athlone Press.

Schaffer, S. (1992). Late Victorian metrology and its instrumentation: A manufactory of Ohms. In R. Bud & S. E. Cozzens (Eds.), Invisible connections: Instruments, institutions, and science (pp. 23-56). Bellingham, WA: SPIE Optical Engineering Press.

Turner, J. (1955, November). Maxwell on the method of physical analogy. British Journal for the Philosophy of Science, 6, 226-238.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

The Birds and the Bees of Living Meaning

November 22, 2010

or

How the New Renaissance Will be Conceived in and Midwifed from the Womb of Nature

Sex, Reproduction, and the Consumer Culture

Human sexuality is, of course, more than the sum of its biological parts. Many parents joke that human reproduction would halt and the species would go extinct were it not for the intense pleasure of sexual experience. Many social critics, for their part, have turned a jaded eye on the rampant use of sexual imagery in the consumer culture. The association of sexual prowess with anything from toothpaste to automobiles plays up an empty metaphor of immediate gratification that connotes shortchanged consumers, unfairly boosted profits, and no redeeming long term value.

We would, of course, be mistaken to make too much of a connection between the parents’ joke and the critics’ social commentary. A bit of humor can help release tension when the work of child rearing and homemaking becomes stressful, and it is unlikely that trade would come to a halt if hot dates were banned from TV commercials. Commerce, in the broad sense of the term, is an end in itself.

But perhaps there is more of a connection than is evident at first blush. Advertising is an extremely compressed form of communication. It competes with many other stimuli for fleeting seconds of attention and so has to get its message across quickly. What better, simpler, more genetically programmed message could there be than the promise of attracting a desirable mate?

This hint is the tip of the tip of an iceberg. The larger question is one that asks how the role of desire and its satisfaction in the procreation of the species might serve as a model for economic activity. Might sexual satisfaction and the resulting reproductive success be taken as a natural model for profit and the resulting economic success?

Though this model has been assumed or described to various extents in the domains of ecological, behavioral, and heterodox economics, what we might call its molecular genetics have not yet been described. At this level, the model functions as a positive-sum game, and not as the zero-sum game so often assumed in economics. Properly conceived and experienced, neither sexuality nor profit give one-sided results, with someone necessarily winning and someone else necessarily losing. Rather, in the optimal circumstances we presumably want to foster, both parties to the exchanges must get what they want and contribute to the overall product of the exchange.

In this scenario, profit has to be further defined as not mere gratification and conquest, but as long term reproductive viability and sustainability. The intensity of sexual desire and satisfaction would likely not have evolved without stakes as high as the continuity of the species. And, indeed, researchers are finding strong positive relationships between firms’ long term profitability and their relations with labor, their communities, and the natural environment. Broadly conceived, for commerce to continue, social intercourse can and ultimately must result in viable offspring situated in a supportive environment.

Living vs Dead Capital

All of this suggests that we might be onto something. But for the metaphor to work, we need to take it further. We find what we need in the language of ecological economics and natural capital, and in the distinction between economically alive and economically dead capital.

The ancient root metaphor hidden in the word “capital” derives from the Latin capitus, head. Some might locate scientific or intellectual capital in a calculating center, like the brain, but others might bring out a sense of capital as part of the natural order. The concept of capital likely emerged in early agricultural economies from a focus on head of livestock: cattle, sheep, horses, etc. We might also conjecture about an even earlier prehistorical sense of capital as naturally embodied in the herds of antelope, deer, elk, or bison that migratory hunters pursued. In both cases, given grazing and water resources supplied by nature, herds replenished themselves with the passing of the seasons, giving birth to new life of their own accord.

There is a sense then in which plant and animal life profits enough from naturally available resources to sustain itself. Though the occurrence of population booms and busts still parallels economic cycles, hunters, fishers, and farmers can be imagined as profiting from managing naturally self-restoring resources within the constraints of a sustainable ecology.

Living capital and the sustenance of ongoing ecologically sound profitability are not restricted, however, to forms of capital stock that walk, crawl, swim, or fly. De Soto (2000) makes a distinction between dead and living capital that explains why capitalism thrives in some countries, but has not yet in others. De Soto points out that the difference between successful and failing capitalist countries lies in the status of what he calls transferable representations within networks of legal and financial institutions. Transferable representations are nothing but the legally recognized and financially fungible titles and deeds that make it possible for the wealth locked up in land, buildings, and equipment to be made exchangeable for other forms of wealth. Titles, deeds, and the infrastructure they function within are, then, what comprise the difference between dead and living capital.

In North America, Europe, Australia, and Japan, property can be divided into shares and sold, or accumulated across properties into an expression of total wealth and leveraged as collateral for further investment, all with no need to modify the property itself in any way. De Soto’s point is that this is often not so in the Third World and former communist countries, where it commonly takes more than 10 years of full time work to obtain legal title, and then similar degrees of effort to maintain it. The process requires so much labor that few have the endurance or resources to complete it. They then must deny themselves the benefits of having an address, and cannot receive mail, electrical service, or take out a mortgage. The economy is then encumbered by the dead weight of the inefficiencies and frictions of frozen capital markets.

In the same way that the mass migration of settlers to the American West forced the resolution of conflicting property claims in the nineteenth century via the Preemption Act, so, too, are the contemporary mass migrations of rural people to megacities around the globe forcing the creation of a new way of legitimating property ownership. DeSoto’s research shows that Third World and former communist countries harbor trillions of dollars of unleverageable dead capital. Individual countries have more wealth tied up as dead capital locked in their impoverished citizens’ homes than in their entire stock markets and GDPs.

So dead capital can be clearly and decisively distinguished from living capital. Living capital is represented by a title or deed legally sanctioned by society as a generally accepted demonstration of ownership. Capital is dead, or, better, not yet brought to life, when its general value (any value it may have beyond its utilitarian function) cannot be represented so as to be leveragable or transferable across time, space, applications, enterprises, etc.

An essential point is this: Human, social, and natural forms of capital are dead in the same way that Third World property is dead capital. We lack a means of representing the value of these forms of capital that is transferable across individuals and contexts. The sense of scientific capital as mobile, additive, and divisible, and as deployed via networks of metrological (measurement science) laboratories, is especially helpful here, as it provides a root definition of what capital is. The geometry of the geodetic survey information incorporated into titles and deeds provides a fundamental insight into capitalism and living capital. But an even better understanding can be found by looking more deeply into the metaphor equating sexual and economic success.

The Birds and the Bees

We all learn as children where babies come from. Spontaneous questions from curious kids can be simultaneously intimidating and hilarious. Discovering that we each came into existence at a certain point in time raises many questions. Children are usually interested, however, in a short answer to a specific question. They go about their processes of creating meaningful stories about the world slowly, bit by bit. Contrary to many parents’ fears, children are less interested in the big picture than they are in knowing something immediately relevant.

Today we are engaged in a similar process that involves both self-discovery and its extension into a model of the world. In the last 100 years, we have endured one crisis of alienation, war, and terrorism after another. So many different stresses are pulling life in so many different directions that it has become difficult to fit our lives into meaningful stories about the world. Anxiety about our roles and places relative to one another has led many of us to be either increasingly lax or increasingly rigid about where we stand. Being simultaneously intelligent and compassionate is more difficult than ever.

But perhaps we know more than we are aware of. Perhaps it would help for us to consider more closely where we as a people, with our modern, global culture, come from. Where did the ideas that shape our world come from? Where do new ideas in general come from? What happens when an idea comes alive with meaning and spreads with such rapidity that it seems to spring forth fully formed in many widely distant places? How does a meme become viral and spread like an epidemic? Questions like these have often been raised in recent years. It seems to me, though, that explorations of them to date have not focused as closely as they could have on what is most important.

For when we understand the reproductive biology of living meaning, and when we see how different species of conceptual life interrelate in larger ecologies, then we will be in the position we need to be in to newly harmonize nature and culture, male and female, black and white, capitalism and socialism, north and south, and east and west.

What is most important about knowing where modern life comes from? What is most important is often that which is most obvious, and the most taken for granted. Given the question, it is interesting that rich metaphors of biological reproduction are everywhere in our thinking about ideas and meaning. Ideas are conceived, for instance, and verbs are conjugated.

These metaphors are not just poetic, emotionally soothing, or apt in a locally specific way. Rather, they hold within themselves some very practical systematic consequences for the stories we tell about ourselves, others, our communities, and our world. That is to say, if we think clearly enough about where ideas come from, we may learn something important about how to create and tell better stories about ourselves, and we may improve the quality of our lives in the process.

So what better place to start than with one of the oldest and most often repeated stories about the first bite from the apple of knowledge? The Western cultural imagery associated with erotic sexuality and knowledgeable experience goes back at least to Eve, the apple, the Tree of Knowledge, and the serpent, in the Garden of Eden. This imagery is complemented by the self-described role of the ancient Greek philosopher, Socrates, as a midwife of ideas. Students still give apples to their teachers as symbols of knowledge, and a popular line of computers originally targeting the education market is named for the fruit of knowledge. The Socratic method is still taught, and charges teachers with helping students to give birth to fully formed ideas able take on lives of their own.

Socrates went further and said that we are enthralled with meaning in the same way a lover is captivated by the beloved. By definition, attention focuses on what is meaningful, as we ignore 99.99% of incoming sensory data. Recognition, by definition, is re-cognition, a seeing-again of something already known, usually something that has a name. Things that don’t have names are very difficult to see, so things come into language in special ways, via science or poetry. And the names of things focus our attention in very specific ways. Just as “weed” becomes a generic name for unwanted wild plants that might have very desirable properties, so, too, does “man” as a generic name for humans restrict thinking about people to males. The words we use very subtly condition our perceptions and behaviors, since, as Socrates put it, we are captivated by them.

The vital importance of sexuality to the reproductive potential of the species is evident in the extent to which it has subliminally been incorporated into the syntax, semantics, and grammar of language. Metaphoric images of procreation and reproduction so thoroughly permeate culture and language that the verb “to be” is referred to as the copula. New ideas brought into being via a copulative relation of subject and object accordingly are said to have been conceived, and are called concepts. One is said to be pregnant with an idea, or to have the seed or germ of an idea. Questions are probing, penetrating, or seminal. Productive minds are fertile or receptive. The back-and-forth give-and-take of conversation is referred to as social intercourse, and intercourse is the second definition in the dictionary for commerce. Dramatic expositions of events are said to climax, or to result in an anti-climax. Ideas and the narrative recounting of them are often called alluring, captivating, enchanting, spellbinding, or mesmerizing, and so it is that one can in fact be in love with an idea.

Philosophers, feminists, and social theorists have gone to great lengths in exploring the erotic in knowing, and vice versa. Luce Irigaray’s meditations on the fecund and Alfred Schutz’s reflections on our common birth from women both resonate with Paul Ricoeur’s examination of the choice between discourse and violence, which hinges on caring enough to try to create shared meaning. In all of these, we begin from love. Such a hopeful focus on nurturing new life stands in the starkest contrast with the existentialist elevation of death as our shared end.

Cultural inhibitions concerning sexuality can be interpreted as regulating it for the greater good. But Western moral proscriptions typically take a form in which sexuality is regarded as a kind of animal nature that must be subjugated in favor of a higher cultural or spiritual nature. In this world view, just as the natural environment is to be dominated and controlled via science and industry, sexual impulses are controlled, with the feminine relegated to a secondary and dangerous status.

Though promiscuity continues to have destructive effects on society and personal relationships, significant strides have been taken toward making sexual relations better balanced, with sex itself considered an essential part of health and well-being. Puritanical attitudes reject sexual expression and refuse to experience fully this most ecstatic way in which we exist, naturally. But accepting our nature, especially that part of it through which we ensure the continuity of the species, is essential to reintegrating nature and culture.

Finding that sexuality permeates every relationship and all communication is a part of that process. The continuity of the species is no longer restricted to concern with biological reproduction. We must learn to apply what we know from generations of experience with sexual, family, and social relationships in new ways, at new levels of complexity. In the same way that lovemaking is an unhurried letting-be that lingers in caring caresses mutually defining each lover to the other, so must we learn to see analogous, though less intense, ways of being together in every form of communion characteristic of communication and community. Love does indeed make the world go round.

Commerce and Science

There are many encouraging signs suggesting that new possibilities may yet be born of old, even ancient, ideas and philosophies. Many have observed over the last several decades that a new age is upon us, that the modern world’s metaphor of a clockwork universe is giving way to something less deterministic and warmer, less alien and more homey. In many respects, what the paradigm shift comes down to is a recognition that the universe is not an inanimate machine but an intelligent living system. Cold, hard, facts are being replaced with warm, resilient ones that are no less objective in the way they assert themselves as independent entities in the world.

In tune with this shift, increasing numbers of businesses and governments are realizing that long term profitability depends on good relationships with an educated and healthy workforce in a stable sociopolitical context, and with respect to the irreplacable environmental services provided by forests, watersheds, estuaries, fisheries, and ecological biodiversity. As Senge (in de Geus, 1997, p. xi) points out,

In Swedish, the oldest term for ‘business’ is narings liv, literally ‘nourishment for life.’ The ancient Chinese characters for ‘business,’ [are] at least 3,000 years old. The first of these characters translates as ‘life’ or ‘live.’ It can also be translated as ‘survive’ and ‘birth.’ The second translates as ‘meaning.’

Ready counterparts for these themes are deeply rooted in the English language. Without being aware of it, without having made any scholarly inquiry into Socrates’ maieutic arts, virtually every one of us already knows everything we need to know about the birth of living meaning. In any everyday assertion that something is such and so, in linking any subject with a predicate, we re-enact a metaphor of reproductive success in the creation of new meaning.

And here, at the very center of language and communication, the reproduction of meaning in conversation requires a copulative act, a conjugal relation, a coupling of subjects and objects via predicates. The back and forth movement of social intercourse is the deep structure that justifies and brings out its full discursive meaning as a pleasurable and productive process that involves probing, seminal questions; conceiving, being pregnant with, and Socratically midwifing ideas; dramatic climaxes; and a state of enchantment, hypnosis, or rapture that focuses attention and provokes passionate engagement.

When has an idea been successfully midwifed and come to life? We know an idea has come to life when we can restate it in our own words and obtain the same result. We know an idea has come to life when we can communicate it to someone else and they too can apply it in their own terms in new situations.

In his book on resolving the mystery of capital, De Soto points out that living capital can be acted on in banks and courts because it is represented abstractly in instruments like titles and deeds. Dead capital, in contrast, for which legal title does not exist, cannot be used as the basis for a mortgage or a small business loan, nor can one claim a right to the property in court.

Similarly, electrical appliances and machinery are living capital because they work the same way everywhere they can be connected to a standardized power grid by trained operators who have access to the right tool sets. Before the advent of widely shared standards, however, something as simple as different sized hoses and connections on hydrants allowed minor disasters to become catastrophes when fire trucks from different districts responding to an alarm were unable to put their available tools to use.

The distinction between dead and living capital is ultimately scientific, metrological, and mathematical. In ancient Greece, geometrical and arithmetical conversations were the first to be referred to as mathematical because they regularly arrive at the same conclusions no matter who the teacher and student are, and no matter which particular graphical or numerical figures are involved. That is, living meaning is objective; it stays the same, within a range of error, independent of the circumstances in which it is produced.

We can illustrate the conception, gestation, and birth of meaning in terms that lead directly to powerful methods of measurement using tests, assessments, and surveys. In yet another instance of linguistic biomimicry, the mathematical word “matrix” is derived from the ancient Greek word for womb. The matrix of observations recorded from the interaction of questions and answers is the fertile womb in which new ideals are conceived and gestated, and from which they are midwifed.

How? The monotony of the repeated questions and answers in the dialogue reveals the inner logic of the way the subject matter develops. By constantly connecting and reconnecting with the partner in dialogue, Socrates ensures that they stay together, attending to the same object. The reiterated yesses allow the object of the conversation to play itself out through what is said.

Conversational objects can exhibit strongly, and even strikingly, constant patterns of responses across different sets of similar questions posed at different times and places to different people by different interviewers, teachers, or surveyers. We create an increased likelihood of conceiving and birthing living meaning when questions are written in a way that enables them all to attend to the same thing, when they are asked of people also able to attend to that conversational object, and when we score the responses consistently as indicating right or wrong, agree or disagree, frequent or rare, etc.

When test, assessment, and survey instruments are properly designed, they bring meaning to life. They do so by making it possible to arrive at the same measure (the same numeric value, within a small range) for a given amount (of literacy, numeracy, health, motivation, innovation, trustworthiness, etc.) no matter who possesses it and no matter which particular collection of items or instrument is used to measure it. For numbers to be meaningful, they have to represent something that stays the same across particular expressions of the thing measured, and across particular persons measured.

We typically think of comparability in survey or testing research as requiring all respondents or examinees to answer the same questions, but this has not been true in actual measurement practice for decades. The power grid, electrical outlets, and appliances are all constructed so as to work together seamlessly across the vast majority of variations in who is using them, when and where they are used, what they are used for, and why they are used. In parallel fashion, educators are increasingly working to ensure that books, reading tests, and instructional curricula also work together no matter who publishes or administers them, or who reads them or who is measured by them.

The advantages of living literacy capital, for instance, go far beyond what can be accomplished with dead literacy capital. When each teacher matches books to readers using her or his personal knowledge, opportunities for uncontrolled variation emerge, and many opportunities for teachers to learn from each other are closed off. When each teacher’s tests are scored in terms of test-dependent counts of correct answers, knowing where any given child stands relative to the educational objectives is made unnecessarily difficult.

In contrast with these dead capital metrics, living literacy capital, such as is made available by the Lexile Framework for Reading and Writing (www.lexile.com), facilitates systematic comparisons of reading abilities with text reading difficulties, relative to different rates of reading comprehension. Instruction can be individualized, which acknowledges and addresses the fact that any given elementary school classroom typically incorporates at least four different grade levels of reading ability.

Reading is thereby made more enjoyable, both for students who are bored by the easiness of the standard classroom text and for those who find it incomprehensible. Testing is transformed from a pure accountability exercise irrelevant to instruction into a means of determining what a child knows and what can optimally be taught next. Growth in reading can be plotted, not only within school years but across them. Students can move from one school to another, or from grade to grade, without losing track of where they stand on the continuum of reading ability, and without unnecessarily making teachers’ lives more difficult.

In the context of living literacy capital, publishers can better gauge the appropriateness of their books for the intended audiences. Teachers can begin the school year knowing where their students stand relative to the end-of-year proficiency standard, can track progress toward it as time passes, and can better ensure that standards are met. Parents can go online, with their children, to pick out books at appropriate reading levels for birthday and holiday gifts, and for summer reading.

Plainly, what we have achieved with living literacy capital is a capacity to act on the thing itself, literacy, in a manner that adheres to the Golden Rule, justly and fairly treating each reader the way any other reader would want to be treated. In this system of universally uniform and ubiquitously accessible metrics, we can act on literacy itself, instead of confusing it with the reading difficulty of any particular text, the reading ability of any particular student, or any interaction between them. In the same way that titles and deeds make it possible to represent owned property in banks and courts abstractly, so, too, does a properly conceived, calibrated, and distributed literacy metric enable every member of the species of literate humans to thrive in ecological niches requiring an ability to read as a survival skill.

The technical means by which literacy capital has been brought to life should be applied to all forms of human, social, and natural capital. Hospital, employment, community, governance, and environmental quality, and individual numeracy, health, functionality, motivation, etc. are all assessed using rating systems that largely have not yet been calibrated, much less brought together into frameworks of shared uniform metric standards. The body of research presenting instrument calibration studies is growing, but much remains to be done. All of the prior posts in this blog and all of my publications, from the most technical to the most philosophical, bear on the challenging problems we face in becoming stewards of living meaning.

The issues are all of a piece. We have to be the change we want to make happen. It won’t work if we mechanically separate what is organically whole. There’s nothing to do but to keep buzzing those beautiful flowers blooming in the fields, pollinating them and bringing back the bits of nourishment that feed the hive. In this way, this season’s fruit ripens, the seeds of new life take shape, and may yet be planted to grow in fertile fields.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Tuning our assessment instruments to harmonize our relationships

January 10, 2010

“Music is the art of measuring well.”
Augustine of Hippo

With the application of Rasch’s probabilistic models for measurement, we are tuning the instruments of the human, social, and environmental sciences, with the aim of being able to harmonize relationships of all kinds. This is not an empty metaphor: the new measurement scales are equivalent, mathematically, with the well-tempered, and later 12-tone equal temperament, scales that were introduced in response to the technological advances associated with the piano.

The idea that the regular patterns found in music are akin to those found in the world at large and in the human psyche is an ancient one. The Pythagoreans held that

“…music’s concordances [were] the covenants that tones form under heaven’s watchful eye. For the Pythagoreans, though, the importance of these special proportions went well beyond music. They were signs of the natural order, like the laws governing triangles; music’s rules were simply the geometry governing things in motion: not only vibrating strings but also celestial bodies and the human soul” (Isacoff, 2001, p. 38).

I have already elsewhere in this blog elaborated on the progressive expansion of geometrical thinking into natural laws and measurement models; now, let us turn our attention to music as another fertile source of the analogies that have proven so productive over the course of the history of science (also explored elsewhere in this blog).

You see, tuning systems up to the invention of the piano (1709) required instruments to be retuned for performers to play in different keys. Each key had a particular characteristic color to its sound. And not only that, some note pairings in any key (such as every twelfth 5th in the mean tone tuning) were so dissonant that they were said to howl, and were referred to as wolves. Composers went out of their way to avoid putting these notes together, or used them in rare circumstances for especially dramatic effects.

Dozens of tuning systems had been proposed in the 17th century, and the concept of an equal-temperament scale was in general currency at the time of the piano’s invention. Bach is said to have tuned his own keyboards so that he could switch keys fluidly from within a composition. His “Well-Tempered Clavier” (published in 1722) demonstrates how a well temperament allows one to play in all 24 major and minor keys without retuning the instrument. Bach also is said to have deliberately used wolf note pairings to show that they did not howl in the way they did with the mean tone tuning.

Equal temperament is not equal-interval in the Pythagorean sense of same-sized changes in the frequencies of vibrating strings. Rather, those frequencies are scaled using the natural logarithm, and that logarithmic scale is what is divided into equal intervals. This is precisely what is also done in Rasch scaling algorithms applied to test, assessment, and survey data in contemporary measurement models.

Pianos are tuned from middle C out, with each sequential pair of notes to the left and right tuned to be the same distance away from C. As the tuner moves further and further away from C, the unit distance of the notes from middle C is slightly adjusted or stretched, so that the sharps and flats become the same note in the black keys.

What is being done, in effect, is that the natural logarithm of the note frequencies is being taken. In statistics, the natural logarithm is called a two-stretch transformation, because it pulls both ends of the normal distribution’s bell curve away from the center, with the ends being pulled further than the regions under the curve closer to the center. This stretching effect is of huge importance to measurement because it makes it possible for different collections of questions addressing the same thing to measure in the same unit.

That is, the instrument dependency of summed ratings or counts of right answers  or categorical response frequencies is like a key-dependent tuning system. The natural logarithm modulates transitions across musical notes in such a way as to make different keys work in the same scaling system, and it also modulates transitions across different reading tests so that they all measure in a unit that remains the same size with the same meaning.

Now, many people fear that the measurement of human abilities, attitudes, health, etc. must inherently involve a meaningless reduction of richly varied and infinite experience to a number. Many people are violently opposed to any suggestion that this could be done in a meaningful and productive way. However, is not music the most emotionally powerful and subtle art form in existence, and simultaneously also incredibly high-tech and mathematical? Even if you ignore the acoustical science and the studio electronics, the instruments themselves embody some of the oldest and most intensively studied mathematical principles in existence.

And, yes, these principles are used in TV, movies, dentists’ offices and retail stores to help create sympathies and environments conducive to the, sometimes painful and sometimes crass, commercial tasks at hand. But music is also by far the most popular art form, and it is accessible everywhere to everyone any time precisely as a result of the very technologies that many consider anathema in the human and social sciences.

But it seems to me that the issue is far more a matter of who controls the technology than it is one of the technology itself. In the current frameworks of the human and social sciences, and of the economic domains of human, social, and natural capital, whoever owns the instrument owns the measurement system and controls the interpretation of the data, since each instrument measures in its own unit. But in the new Rasch technology’s open architecture, anyone willing to master the skills needed can build instruments tuned to the reference standard, ubiquitous and universally available scale. What is more, the demand that all instruments measuring the same thing must harmonize will transfer control of data interpretation to a public sphere in which experimental reproducibility trumps authoritarian dictates.

This open standards system will open the door to creativity and innovation on a par with what musicians take for granted. Common measurement scales will allow people to jam out in an infinite variety of harmonic combinations, instrumental ensembles, choreographed moves, and melodic and rhythmic patterns. Just as music ranges from jazz to symphonic, rock to punk to hiphop to blues to country to techno, or atonal to R & B, so, too, do our relationships. A whole new world of potential innovations opens up in the context of methods for systematically evaluating naturally occurring and deliberately orchestrated variations in organizations, management, HR training methods, supply lines, social spheres, environmental quality, etc.

The current business world’s near-complete lack of comparable information on human, social, and natural capital is oppressive. It puts us in the situation of never knowing what we get for our money in education and healthcare, even as costs in these areas spiral into absolutely stratospheric levels. Having instruments in every area of education, health care, recreation, employment, and commerce tuned to common scales will be liberating, not oppressive. Having clear, reproducible, meaningful, and publicly negotiated measures of educational and clinical care outcomes, of productivity and innovation, and of trust, loyalty, and environmental quality will be a boon.

In conclusion, consider one more thing. About 100 years ago, a great many musicians and composers revolted against what they felt were the onerous and monotonous constraints of the equal-tempered tuning system. Thus we had an explosion of tonal and rhythmic innovations across the entire range of musical artistry. With the global popularity of world music’s blending of traditional forms with current technology and Western forms, the use of alternatives to equal temperament has never been greater. I read once that Joni Mitchell has used something like 32 different tunings in her recordings. Jimi Hendrix and Neil Young are also famous for using unique tunings to define their trademark sounds. What would the analogy of this kind of creativity be in the tuning of tests and surveys? I don’t know, but I’m looking forward to seeing it, experiencing it, and maybe even contributing to it. Les Paul may not be the only innovator in instrument design who figured out not only how to make it easy for others to express themselves in measured tones, but who also knew how to rock out his own yayas!

References and further reading:

Augustine of Hippo. (1947/2002). On music. In Writings of Saint Augustine Volume 2. Immortality of the soul and other works. (L. Schopp, Trans.) (pp. 169-384). New York: Catholic University of America Press.

Barbour, J. M. (2004/1954). Tuning and temperament: A historical survey. Mineola, NY: Dover Publications.

Heelan, P. A. (1979). Music as basic metaphor and deep structure in Plato and in ancient cultures. Journal of Social and Biological Structures, 2, 279-291.

Isacoff, S. M. (2001). Temperament: The idea that solved music’s greatest riddle. New York: Alfred A. Knopf.

Jorgensen, O. (1991). Tuning: Containing the perfection of eighteenth-century temperament, the lost art of nineteenth-century temperament and the science of equal temperament. East Lansing, Michigan: Michigan State University.

Kivy, P. (2002). Introduction to a philosophy of music. Oxford, England: Oxford University Press.

Mathieu, W. A. (1997). Harmonic experience: Tonal harmony from its natural origins to its modern expression. Rochester, Vermont: Inner Traditions International.

McClain, E. (1984/1976). The myth of invariance: The origin of the gods, mathematics and music from the Rg Veda to Plato (P. A. Heelan, Ed.). York Beach, Maine: Nicolas-Hays, Inc.

Russell, G. (2001/1953). Lydian chromatic concept of tonal organization (4th ed.). Brookline, MA: Concept Publishing.

Stone, M. (2002, Autumn). Musical temperament. Rasch Measurement Transactions, 16(2), 873.

Sullivan, A. T. (1985). The seventh dragon: The riddle of equal temperament. Lake Oswego, OR: Metamorphous Press.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.