Archive for the ‘reinventing capitalism’ Category

Why economic growth can and inevitably will be green

October 1, 2018

So, approaching matters once again from yet another point of view, we have Jason Hickel explaining a couple of weeks ago “Why Growth Can’t Be Green.” This article provides yet another example of how the problem is the problem. That is, the way we define problems sets up particular kinds of solutions in advance, and sometimes, as Einstein famously pointed out, problems cannot be solved from within the same conceptual framework that gave rise to them. I’ve expanded on this theme in a number of previous posts, for instance, here.

Hickel takes up the apparent impossibility of aligning economic growth with environmental values. He speaks directly to what he calls the rebound effect, the way that “improvements in resource efficiency drive down prices and cause demand to rise—thus canceling out some of the gains.” But that rebound can happen only as long as the economy remains defined and limited by the alignment of manufactured capital and finance, ignoring the largely unexamined and unconsidered possibility that human, social, and natural capital could be measured well enough to be also aligned with finance.

Hence, as I say, the problem is the problem. Broadening one’s conceptualization of the problem opens up new opportunities that otherwise never come into view.

The Hickel article’s entire focus is then on top-down policy impositions like taxes or a Genuine Progress Index. These presume human, social, and natural capital can only ever exist in dead formations that have to be micromanaged and concretely manipulated, and that efficient markets bringing them to life are inherently and literally unthinkable. (See a short article here for an explanation of the difference between dead and living capital. There’s a lot more where that came from, as is apparent in the previous posts here in this blog.)

The situation could be vastly different than what Hickel imagines. If we could own, buy, and sell products in efficient markets we could reward the production of human, social, and environmental value. In that scenario, when improvements in environmental resource efficiency are obtained, demand for that new environmental value will rise and its price will go down, not the resource’s price.

We ought to be creative enough to figure out how to configure markets so that prices for environmental resources (oil, farmland, metals, etc.) can stay constant or fall without increasing demand for them, as could happen if that demand is counterbalanced and absorbed by rising human, social, and environmental quality capital values.

The question is how to absorb the rebound effect in other forms of capital that grow in demand while holding demand for the natural resource base in check. The vital conceptual distinction is between socialistic centralized planning and control of actual physical entities (people, communities, the environment, and manufactured items), on the one hand, and capitalistic decentralized distributed network effects on abstract transferable representations, on the other. Everyone defaults to the socialist scenario without ever considering there might be a whole other arena in which fruitful possibilities might be imagined.

What if, for instance, we could harness the profit motive to promote growth in genuine human, social, and environmental value? What if we were able to achieve qualitatively meaningful increases in authentic wealth that were economically contingent on reduced natural resource consumption? What if the financial and substantive value profits that could be had meant that resource consumption could be reduced by the same kinds of factors as have been realized in the context of Moore’s Law? What if a human economics of genuine value could actually result in humanity being able to adjust the global thermostat up or down in small increments by efficiently rewarding just the right combinations of policies and practices at the right times and places in the right volumes?

The only way that could ever happen is if people are motivated to do the right thing for the earth and for humanity because it is the right thing for them and their families. They have to be able to own their personal shares of their personal stocks of human, social, and natural capital. They have to be able to profit from investments in their own and others’ shares. They will not act on behalf of the earth and humanity only because it is the right thing to do. There has to be evidence and explanations of how everyone is fairly held accountable to the same standards, and has the same opportunities for profit and loss as anyone else. Then, and only then, it seems, will human, social, and environmental value become communicable in a viral contagion of good will.

Socialism has been conclusively proven unworkable, for people, communities, and the environment, as well as financially. But a human, social, and natural capitalism has hardly even been articulated, much less tried out. How do we make human, social, and natural capital fungible? How might the economy transcend its traditional boundaries and expand itself beyond the existing alignment of manufactured capital and finance?

It’s an incredibly complex proposal, but also seems like such a simple thing. The manufactured capital economy uses the common language of good measurement to improve quality, to simplify management communications, and to lower transaction costs in efficient markets. So what should we do if we want to correct the imbalanced negative impacts on people, communities, and the environment created by the misplaced emphasis on aligning only manufactured capital and financial capital?

As has been repeatedly proposed for years in this blog, maybe we should use the manufactured capital markets as a model and use good measurement to improve the quality of human, social, and environmental capital, to simplify communications and management, to lower transaction costs, and to align the genuine human, social, and environmental value created with financial value in efficient markets.

Of course, grasping that as viable, feasible, and desirable requires understanding that substantively meaningful precision measurement is something quite different from what usually passes for quantification. And that is an entirely different story, though one taken up repeatedly in previous entries in this blog, of course….

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

 

Advertisements

Current events in metrology for fun, profitable, and self-sustaining sustainability impacts

September 18, 2018

At the main event I attended last week at the Global Climate Action Summit in San Francisco, the #giveyouthachance philanthropic gathering at the Aquarium of the Bay, multiple people independently spoke to aligning social and environmental values with financial values, and explicitly stated that economic growth does not automatically entail environmental degradation.

As my new buddy David Traub (introduced as a consequence of the New Algorithm event in Stockholm in June with Angelica Lips da Cruz) was the MC, he put me on the program at the last minute, and gave me five minutes to speak my piece in a room of 30 people or so. A great point of departure was opened up when Carin Winter of MissionBe.org spoke to her work in mindfulness education and led a guided meditation. So I conveyed the fact that the effects of mindfulness practice are rigorously measurable, and followed that up with the analogy from music (tuning instruments to harmonize relationships),  with the argument against merely shouldering the burden of costs because it is the right thing to do, with the counter-argument for creating efficient competitive markets for sustainable impacts, and with info on the previous week’s special session on social and psychological metrology at IMEKO in Belfast. It appeared that the message of metrology as a means for making sustainability self-sustaining, fun, and profitable got through!

Next up: Unify.Earth has developed their own new iteration on blockchain, which will be announced Monday, 24 September, at the UN SDG Media Center (also see here) during the World Economic Forum’s Sustainable Development Impact Summit. The UEX (Unify Earth Exchange) fills the gap for human capital stocks left by the Universal Commons‘ exclusive focus on social and natural capital.

So I’ve decided to go to NY and have booked my travel.

Back in February, Angelica Lips da Cruz recounted saying six months before that it would take two years to get to where we were at that time. Now another seven months have passed and I am starting to feel that the acceleration is approaching Mach 1! At this rate, it’ll be the speed of light in the next six months….

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

A Yet Simpler Take on Making Sustainability Self-Sustaining

September 1, 2018

The point of focusing on sustainability is to balance human interests with a long term view of life on earth. Depleting resources as though they will be always available plainly is no way to plan for a safe and pleasant future. But it seems to me something is missing in the way we approach sustainability. Every time I see any efforts aimed at rebalancing resource usage with a long term view of the Earth’s capacity to support us, what do I see? I see solutions that cost a lot, and people saying that the costs are the price we have to pay for the mistakes that have been made, and for a viable future. And so I also see a lot of procrastination, delays, and reluctance to commit to sustainable policies and practices.

Why? Because, first, there are a great many people who cannot afford to live in the world as it is, right now, simply bearing their existing day-to-day costs. Even in the richest countries, huge proportions of people live hand to mouth, or very nearly so. Second, it’s hard to detect and punish freeloaders. Many people, companies, and governments are willing to hold off committing to sustainability in the hope that some technological fix will come along and spare them avoidable costs.

So, my question is, and I do not say this at all in jest or with any sense of irony or sarcasm: how do we make sustainability fun and profitable? How can we make sustainability economically self-sustaining? How can we make sustainability into a growth industry?

My answer to those questions is, by improving the quality of information on sustainability impacts. What does that mean? Why should that have anything to do with making sustainability fun and profitable? What improving the quality of information on sustainability impacts means is measuring it well, using methods and models that have been used in research and practice for more than 90 years. What we need is a Human, Social, and Natural Capital Metric System. or an International System of Units for Human, Social, and Natural Capital.

As we all know from the existing SI (metric system) units, high quality information makes it much easier to communicate value. Easier communication means lower transaction costs, and lower transaction costs mean that it becomes very inexpensive to find out how much of a sustainability impact is available, and what quality it is. High quality information enables grassroots bottom up efforts coordinating the decisions and behaviors of everyone everywhere. Managers would be able to dramatically improve quality in domains of human, social, and environmental value the way they do now for manufactured value. And investors would be able to reward innovation in those areas in ways they currently cannot.

For instance, with high quality sustainability impact measures, you’d be able to buy shares of stock in a new global carbon reduction effort that realistically projects it is on track to reverse climate change back its 1980 status. If someone came out with a better carbon reduction product that would make it possible to get the job done faster or at lower cost, we would have the information we need to quickly shift the flow of resources to the better product.

Speaking to other components of the UN’s Sustainability Development Goals, maybe people need to wonder why they cannot go buy 250 units of additional literacy right now? Why can’t you get a good price on a specific amount of literacy gain for your ten-year-old child from a few minutes of competitive shopping? And while you’re at it, maybe you could catch a special sale on 470 units of improved physical functionality for your great aunt who just had a hip replacement. Oh, she doesn’t need it because she’s got herself listed in a health capital investment bond likely to pay a 6% return? Well, maybe you should sink some funds into one of those contracts!

To take up the SDG 16.1 issue, if efforts to reduce armed violence were measured with the same level of information quality as kilowatt hours, that form of social capital product would be available in market transactions just the same way manufactured capital products like electricity are now. Conversely, your personal efforts at reducing armed violence, or improving someone’s literacy, or helping your great aunt with gains in physical functionality—all of these are investments of your skills and abilities that will pay back cash value to you. And because having fun with the kids, and getting out for recreational activities, are healthful things to do, enjoyment also should pay dividends.

Maybe this focus on fun and profit in making sustainability economically self-sustaining might finally find some traction for efforts in this area. Sustainability commerce could be a way of talking about these issues that will speak to matters more directly and practically. We’ll see how that works out as I try it on people in the near future.

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

 

Metrics, Stocks, Shares, and Secure Ledger Accounts for Living Capital: Getting the Information into the Hands of Individual Decision Makers

August 30, 2018

Individual investments in, and returns from, shares of various kinds of human, social, and natural capital stocks will be tracked in secure online accounting ledgers, often referred to generically using the Blockchain brand name. A largely unasked and unanswered question is just what kind of data would best be tracked in secure ledgers. To be meaningful, entries in such accounts will have to stand for something real in the world that is represented in a common language interpretable to anyone capable of reading the relevant signs and symbols. Since we are talking about amounts of things that vary, measurement will unavoidably be a factor.

High quality measurement is essential to the manageability and profitability of investments of all kinds, whether in manufactured capital and property, or in literacy, numeracy, mental and physical health, sociability, and environmental quality (human, social, and natural capital). The measurability and manageability of these intangible factors has achieved significant levels of scientific precision and rigor over the last 90 and more years.

This development is of increasing interest to economists and accountants who have long envisioned ways of reinventing capitalism that do not assume the only alternative is some form of socialism or communism (see references listed below). Many of today’s economic problems may follow from capitalism’s incompleteness. More specifically, we may be suffering from the way in which manufactured capital alone has been been brought to life, economically speaking, while human, social, and natural capital have not (Fisher, 2002, 2007, 2009a/b, 2010a/b, 2011a/b, 2012ab, 2014, etc.).

One in particular who speaks directly to an essential issue that must be addressed in creating an economy of authentic wealth and genuine productivity is Paul Hawken (2007, pp. 21-22), who says that Friedrich Hayek foresaw

“a remedy for the basic expression of the totalitarian impulse: ensuring that information and the right to make decisions are co-located. To achieve this, one can either move the information to the decision makers, or move decision making rights to the information. The movement strives to do both. The earth’s problems are everyone’s problems, and what modern technology and the movement can achieve together is to distribute problem solving tools.”

Hayek (1945, 1948, 1988; Frantz & Leeson, 2013) is well known for his focus on a distinction between a mechanical definition of individuals as uniform and homogenous, and a more vital sense of economic “true individuals” as complex and interdependent. To create efficient markets for the production of authentic wealth, we need to figure out how to extend the “true individuals” of manufactured capital markets into new markets for human, social, and natural capital (Fisher, 2014).

The distributed problem solving tools we need to support the decision making of “true” individuals are secure online ledgers accounting for investments in measured amounts of authentic wealth. Efficient markets are functions of individual processes that create wholes greater than their sums. The multiplier effect that makes this possible depends on transparent communication. Words, including number words, have to mean something specific and distinct. This is where the value of systematic measurement and metrology comes to bear. This is why we need an Intangible Assets Metric System.

For as long as economists have been concerned with markets, philosophers have been pointing out that society is an effect of shared symbol systems. In both cases, economists and philosophers are focused on the fact that it is only when people have a common language that an idea, a meme, can go viral, that a market can seem to have a mind of its own, and science can maintain an ever-increasing pace of technical innovation.

Our aim is to create the information that will populate the entries in the secure ledger accounts people use to track and manage their investments in literacy, numeracy, health, social, and natural capital. These entries will be posted right alongside their existing entries for investments in manufactured capital and property, which includes everything from groceries to autos to electronics to homes.

But the new ledger accounts will be different from today’s in important ways. Many current accounting entries are ultimately written off as costs producing untracked and unaccountable returns. We simply spend the money on groceries or school tuition or a doctor visit. The income is logged, and so are the expenses. We can see that, yes, buying groceries is an investment of a kind, since we profit from it by enjoying the processes of cooking, sharing, and eating tasty food, by avoiding hunger, and by sustaining good health.

Investments are tracked in a different way, though. Money is not just spent and kissed goodbye. Instead, investment funds are loaned to or leased by someone else who is expected to be able to increase the value of those funds. There are often no guarantees of an increase, but the invested value is associated with a proportionate share in the total value of the business. As the business grows or fails, so does the investment.

In much the same way, if we had the information available to us, we could track the returns on the investments we make in food, education, or health care. If we track the impacts of our dietary choices, we would be able to see if and when the investments we make result in healthy outcomes. The information brought to bear will have to include systematic advice relevant to one’s age, sex, pre-existing conditions, genetic propensities, etc. Additional information on the returns on one’s investments in a healthy diet should also be made available, as might be found in the expected income or expenses associated with the consequences of what is eaten, and how much of it. Sometimes there will be room for improvement, for example, if the foods we eat are too sugary or fatty, or if we eat too much. Other times, maintaining a healthy, varied diet may be all that is needed to see a consistent positive return on investment.

Public reports will allow us all to learn from one another. The ability to communicate in a common language and to see what has worked for others will enable everyone to experiment with new ways of doing things. People with common food interests or problems, for instance, will be able quickly evaluate the relevance and benefits of other people’s approaches or solutions. Because of the ways in which communication and community go together, it may be reasonable to hope that new levels of innovation, diversity, tolerance, and respect will follow.

Many aspects of work, education and health care are already undergoing transformations that move their processes out of the usual office, school and hospital environments. These changes will be accelerated as distributed network effects take hold in each of these various markets.

It is easy to see how the Internet of things may evolve to be the medium in which we manage relationships of all kinds, from education and school to health and safety to work and career. Secure ledgers immune from hacking will be essential. And an important health factor will be to know how much relationship management is enough, and when it’s time to get out into the world. That balancing factor will be a key aspect of a successful approach to connecting information on authentic wealth with the individual decision makers growing it and living it.

References

Andriessen, D. (2003). Making sense of intellectual capital: Designing a method for the valuation of intangibles. Oxford, England: Butterworth-Heinemann.

Anielski, M. (2007). The economics of happiness: Building genuine wealth. Gabriola, British Columbia: New Society Publishers.

Cadman, D. (1986). Money as if people mattered. In P. Ekins &  Staff of The Other Economic Summit (Eds.), The living economy: A new economics in the making (pp. 204-210). London: Routledge & Kegan Paul.

Eisler, R. (2007). The real wealth of nations: Creating a caring economics. San Francisco, California: Berrett-Koehler Publishers, Inc.

Ekins, P. (1992). A four-capital model of wealth creation. In P. Ekins & M. Max-Neef (Eds.), Real-life economics: Understanding wealth creation (pp. 147-155). London: Routledge.

Ekins, P. (1999). Economic growth and environmental sustainability: The prospects for green growth. New York: Routledge.

Ekins, P., Dresner, S., & Dahlstrom, K. (2008, March/April). The four-capital method of sustainable development evaluation. European Environment, 18(2), 63-80.

Ekins, P., Hillman, M., & Hutchison, R. (1992). The Gaia atlas of green economics (Foreword by Robert Heilbroner). New York: Anchor Books.

Ekins, P., & Max-Neef, M. A. (Eds.). (1992). Real-life economics: Understanding wealth creation. London: Routledge.

Ekins, P., & Voituriez, T. (2009). Trade, globalization and sustainability impact assessment: A critical look at methods and outcomes. London, England: Earthscan Publications Ltd.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009a, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009b). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (Tech. Rep., http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010a). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital., Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (p. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340674).

Fisher, W. P., Jr. (2010b, 13 January). Reinventing capitalism: Diagramming living capital flows in a green, sustainable, and responsible economy. Retrieved from LivingCapitalMetrics.com: https://livingcapitalmetrics.wordpress.com/2010/01/13/reinventing-capitalism/.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. Journal of Applied Measurement, 12(1), 49-66.

Fisher, W. P., Jr. (2011b). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com. Retrieved 18 January 2011, from Social Science Research Network: http://ssrn.com/abstract=1739386.

Fisher, W. P., Jr. (2012a). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012b, May/June). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2014, Autumn). The central theoretical problem of the social sciences. Rasch Measurement Transactions, 28(2), 1464-1466.

Frantz, R., & Leeson, R. (Eds.). (2013). Hayek and behavioral economics. (Archival Insights Into the Evolution of Economics). New York: Palgrave Macmillan.

Gleeson-White, J. (2015). Six capitals, or can accountants save the planet? Rethinking capitalism for the 21st century. New York: Norton.

Greider, W. (2003). The soul of capitalism: Opening paths to a moral economy. New York: Simon & Schuster.

Griliches, Z. (1994, March). Productivity, R&D, and the data constraint. American Economic Review, 84(1), 1-23.

Grootaert, C. (1998). Social capital: The missing link? (Vol. 3). Social Capital Intiative Working Paper). Washington, D.C.: The World Bank.

Hand, J. R. M., & Lev, B. (Eds.). (2003). Intangible assets: Values, measures, and risks. Oxford Management Readers). Oxford, England: Oxford University Press.

Hart, S. L. (2005). (2007). Capitalism at the crossroads: Aligning business, earth, and humanity (Foreword by Al Gore) (2nd ed.). Wharton School Publishing.

Hawken, P. (1993). The ecology of commerce: A declaration of sustainability. New York: HarperCollins Publishers.

Hawken, P. (2007). Blessed unrest: How the largest movement in the world came into being and why no one saw it coming. New York: Viking Penguin.

Hayek, F. A. (1945, September). The use of knowledge in society. American Economic Review, 35, 519-530. (Rpt. in Individualism and economic order (pp. 77-91). Chicago: University of Chicago Press.)

Hayek, F. A. (1955). The counter revolution of science. Glencoe, Illinois: Free Press.

Hayek, F. A. (1988). The fatal conceit: The errors of socialism (W. W. Bartley, III, Ed.) (Vol. I). The Collected Works of F. A. Hayek. Chicago: University of Chicago Press.

Korten, D. (2009). Agenda for a new economy: From phantom wealth to real wealth. San Francisco: Berret-Koehler Publishing.

Krueger, A. B. (Ed.). (2009). Measuring the subjective well-being of nations: National accounts of time use and well-being. National Bureau of Economic Research Conference Reports). Chicago, Illinois: University of Chicago Press.

Swann, G. M. P. (2001). “No Wealth But Life”: When does conventional wealth create Ruskinian wealth. European Research Studies, 4(3-4), 5-18.

Vemuri, A. W., & Costanza, R. (2006, 10 June). The role of human, social, built, and natural capital in explaining life satisfaction at the country level: Toward a National Well-Being Index. Ecological Economics, 58(1), 119-133.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Self-Sustaining Sustainability, Once Again, Already

August 12, 2018

The urgent need for massive global implementations of sustainability policies and practices oddly and counterproductively has not yet led to systematic investments in state of the art sustainability metric standards. My personal mission is to contribute to meeting this need. Longstanding, proven resources in the art and science of precision instrumentation calibration and explanatory theory are available to address these problems. In the same way technical standards for measuring length, mass, volume, time, energy, light, etc. enable the coordination of science and commerce for manufactured capital and property, so, too, will a new class of standards for measuring human, social, and natural capital.

This new art and science contradicts common assumptions in three ways. First, contrary to popular opinion that measuring these things is impossible, over 90 years of research and practice support a growing consensus among weights and measures standards engineers (metrologists) and social and psychological measurement experts that relevant unit standards are viable, feasible, and desirable.

Common perceptions are contradicted in a second way in that measurement of this kind does not require reducing human individuality to homogenized uniform sameness. Instead of a mechanical metaphor of cogs in a machine, the relevant perspective is an organic or musical one. The goal is to ensure that local uniqueness and creative improvisations are freely expressed in a context informed by shared standards (like DNA, or a musical instrument tuning system).

The third way in which much of what we think we know is mistaken concerns how to motivate adoption of sustainability policies and practices. Many among us are fearful that neither the general population nor its leaders in government and business care enough about sustainability to focus on implementing solutions. But finding the will to act is not the issue. The problem is how to create environments in which new sustainable forms of life multiply and proliferate of their own accord. To do this, people need means for satisfying their own interests in life, liberty, and the pursuit of happiness. The goal, therefore, is to organize knowledge infrastructures capable of informing and channeling the power of individual self-interest. The only way mass scale self-sustaining sustainable economies will ever happen is by tapping the entrepreneurial energy of the profit motive, where profit is defined not just in financial terms but in the quality of life and health terms of authentic wealth and genuine productivity.

We manage what we measure. If we are to collectively, fluidly, efficiently, and innovatively manage the living value of our human, social, and natural capital, we need, first, high quality information expressed in shared languages communicating that value. Second, we need, to begin with, new scientific, legal, economic, financial, and governmental institutions establishing individual rights to ownership of that value, metric units expressing amounts of that value, conformity audits for ascertaining the accuracy and precision of those units, financial alignments of the real value measured with bankable dollar amounts, and investment markets to support entrepreneurial innovations in creating that value.

The end result of these efforts will be a capacity for all of humanity to pull together in common cause to create a sustainable future. We will each be able to maximize our own personal potential at the same time we contribute to the greater good. We will not only be able to fulfill the potential of our species as stewards of the earth, we will have fun doing it! For technical information resources, see below. PDFs are available on request, and can often be found freely available online.

Self-Sustaining Sustainability

Relevant Information Resources

William P. Fisher, Jr., Ph.D.

Barney, M., & Fisher, W. P., Jr. (2016). Adaptive measurement and assessment. Annual Review of Organizational Psychology and Organizational Behavior, 3, 469-490.

Fisher, W. P., Jr. (1997). Physical disability construct convergence across instruments: Towards a universal metric. Journal of Outcome Measurement, 1(2), 87-113.

Fisher, W. P., Jr. (1999). Foundations for health status metrology: The stability of MOS SF-36 PF-10 calibrations across samples. Journal of the Louisiana State Medical Society, 151(11), 566-578.

Fisher, W. P., Jr. (2000). Objectivity in psychosocial measurement: What, why, how. Journal of Outcome Measurement, 4(2), 527-563.

Fisher, W. P., Jr. (2002). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2003). The mathematical metaphysics of measurement and metrology: Towards meaningful quantification in the human sciences. In A. Morales (Ed.), Renascent pragmatism: Studies in law and social science (pp. 118-153). Brookfield, VT: Ashgate Publishing Co.

Fisher, W. P., Jr. (2004). Meaning and method in the social sciences. Human Studies: A Journal for Philosophy & Social Sciences, 27(4), 429-454.

Fisher, W. P., Jr. (2007). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009, November 19). Draft legislation on development and adoption of an intangible assets metric system. Living Capital Metrics blog: https://livingcapitalmetrics.wordpress.com/2009/11/19/draft-legislation/.

Fisher, W. P., Jr. (2009). Invariance and traceability for measures of human, social, and natural capital. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010, 22 November). Meaningfulness, measurement, value seeking, and the corporate objective function: An introduction to new possibilities. LivingCapitalMetrics.com, Sausalito, California.

Fisher, W. P., Jr. (2010). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital. Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340674).

Fisher, W. P., Jr. (2010). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics Conference Series, 238(1), 012016.

Fisher, W. P., Jr. (2011). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2015). A probabilistic model of the law of supply and demand. Rasch Measurement Transactions, 29(1), 1508-1511 [http://www.rasch.org/rmt/rmt291.pdf].

Fisher, W. P., Jr. (2015). Rasch measurement as a basis for metrologically traceable standards. Rasch Measurement Transactions, 28(4), 1492-1493 [http://www.rasch.org/rmt/rmt284.pdf].

Fisher, W. P., Jr. (2015). Rasch metrology: How to expand measurement locally everywhere. Rasch Measurement Transactions, 29(2), 1521-1523.

Fisher, W. P., Jr. (2017, September). Metrology, psychometrics, and new horizons for innovation. 18th International Congress of Metrology, Paris, 10.1051/metrology/201709007.

Fisher, W. P., Jr. (2017). A practical approach to modeling complex adaptive flows in psychology and social science. Procedia Computer Science, 114, 165-174.

Fisher, W. P., Jr. (2018). How beauty teaches us to understand meaning. Educational Philosophy and Theory, in review.

Fisher, W. P., Jr. (2018). Separation theorems in econometrics and psychometrics: Rasch, Frisch, two Fishers, and implications for measurement. Scandinavian Economic History Review, in review.

Fisher, W. P., Jr., Harvey, R. F., & Kilgore, K. M. (1995). New developments in functional assessment: Probabilistic models for gold standards. NeuroRehabilitation, 5(1), 3-25.

Fisher, W. P., Jr., Harvey, R. F., Taylor, P., Kilgore, K. M., & Kelly, C. K. (1995). Rehabits: A common language of functional assessment. Archives of Physical Medicine and Rehabilitation, 76(2), 113-122.

Fisher, W. P., Jr., & Stenner, A. J. (2011, January). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series).National Science Foundation: http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36.

Fisher, W. P., Jr., & Stenner, A. J. (2011, August 31 to September 2). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium, http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf, Jena, Germany.

Fisher, W. P., Jr., & Stenner, A. J. (2016). Theory-based metrological traceability in education: A reading measurement network. Measurement, 92, 489-496.

Fisher, W. P., Jr., & Wilson, M. (2015). Building a productive trading zone in educational assessment research and practice. Pensamiento Educativo: Revista de Investigacion Educacional Latinoamericana, 52(2), 55-78.

Pendrill, L., & Fisher, W. P., Jr. (2013). Quantifying human response: Linking metrological and psychometric characterisations of man as a measurement instrument. Journal of Physics Conference Series, 459, 012057.

Pendrill, L., & Fisher, W. P., Jr. (2015). Counting and quantification: Comparing psychometric and metrological perspectives on visual perceptions of number. Measurement, 71, 46-55.

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Revisiting Hayek’s Relevance to Measurement

May 31, 2018

As so often happens, I’m finding new opportunities for restating what seems obvious to me but does not impact others in the way it ought to. The work of the Austrian economist Friedrich Hayek speaks to me in a particular way that has always, to me, self-evidently expressed ideas of fundamental value and interest. Reviewing his work again lately has opened it up to a new level of detail that is worth sharing here.

Hayek (1948, p. 54) is onto a key point about measurement and its role in economics when he says:

…the spontaneous actions of individuals will, under conditions which we can define, bring about a distribution of resources which can be understood as if it were made according to a single plan, although nobody has planned it…?

Decades of measurement research shows that individuals’ spontaneous responses to assessment and survey questions conform to one another in ways that might appear to have been centrally organized according to a single plan. But over and over again the same patterns are produced with no efforts made to guide or coerce responses that conform in that way.

The results of testing and assessment produced in educational measurement can be expressed in economic terms fitting quite well with Hayek’s observation. Student abilities, economically speaking, are human capital resources. Each student has some amount of ability that can be considered a supply of resources available for application to the demands of the challenges posed by the assessment questions. When assessment data fit a Rasch model, the supply of student abilities have spontaneously organized themselves in relation to challenging demands for that supply of abilities posed by the test questions. The invariant consistency of the data and resulting model fit has not been produced by coercing or guiding the students to respond in a particular way. Although questions can be written to vary in difficulty according to a construct theory, and though educational curricula traditionally vary in difficulty across grade levels, the patterns of growth and change that are observed are plainly not taking place as a result of anyone’s intentions or plans.

This kind of complex adaptive, self-organizing process (Fisher, 2017) describes not just the relations of student abilities and task difficulties, but also the relations of customer preferences to product features, patient health and functionality relative to disease and disability, etc. It also, of course, applies to supply and demand relative to a price (Fisher, 2015). For students, the price to be paid follows from the probability of a supply of ability meeting the demand for it posed by the challenges encountered in assessment items.

Getting back to Hayek (1948, p. 54), here we meet the relevance of the

…central question of all social sciences: How can the combination of fragments of knowledge existing in different minds bring about results which, if they were to be brought about deliberately, would require a knowledge on the part of the directing mind which no single person can possess?

Per Hayek’s point, no one student will know the answers to all of the questions posed in a test, and yet all of the students’ fragments of knowledge combine in a way that bring about results seemingly defined by a single intelligence. It is this bottom up and self-organized emergence of knowledge structures that we capture in measurement and bring into our culture, our sciences, and our economies by bringing things into words and the common languages of standardized metrics.

This spontaneous emergence of structure does not lead directly of its own accord to the creation of markets. Rather, it is vitally important to recognize, along with Miller and O’Leary (2007, p. 710) that:

Markets are not spontaneously generated by the exchange activity of buyers and sellers. Rather, skilled actors produce institutional arrangements, the rules, roles and relationships that make market exchange possible. The institutions define the market, rather than the reverse.

The institutional arrangements we need to make to create efficient markets for human, social, and natural capital will be staggeringly difficult to realize. But a point in time will come when the costs of remaining in our current cultural, political, and economic ruts will be greater, and the benefits will be lower, than the costs and benefits of investing in a new future. That time may be sooner than anyone thinks it will be.

References

Fisher, W. P., Jr. (2015). A probabilistic model of the law of supply and demand. Rasch Measurement Transactions, 29(1), 1508-1511  [http://www.rasch.org/rmt/rmt291.pdf].

Fisher, W. P., Jr. (2017). A practical approach to modeling complex adaptive flows in psychology and social science. Procedia Computer Science, 114, 165-174. Retrieved from https://doi.org/10.1016/j.procs.2017.09.027

Hayek, F. A. (1948). Individualism and economic order. Chicago: University of Chicago Press.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-734.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Differences between today’s sustainability metrics and the ones needed for low cost social value transactions and efficient markets for intangible assets

November 16, 2017

Measurement is such a confusing topic! Everyone proclaims how important it is, but almost no one ever seeks out and implements the state of the art, despite the enormous advantages to be gained from doing so.

A key metric quality issue concerns the cumbersome and uninterpretable masses of data that well-intentioned people can hobble themselves with when they are interested in improving their business processes and outcomes. They focus on what they can easily count, and then they wrongly (at great but unrecognized cost) misinterpret the counts and percentages as measures.

For instance, today’s sustainability and social value indicators are each expressed in a different unit (dollars, hours, tons, joules, kilowatt hours, survey ratings, category percentages, etc.; see below for a sample list). Some of them may indeed be scientific measures of that individual aspect of the business. The problem is they are all being interpreted in an undefined and chaotic aggregate as a measure of something else (social value, sustainability, etc.). Technically speaking, if we want a scientific measure of that higher order construct, we need to model it, estimate it, calibrate it, and deploy it as a common language in a network of instruments all traceable to a common unit standard.

All of this is strictly parallel with what we do to make markets in bushels of corn, barrels of oil, and kilowatts of electricity. We don’t buy produce by count in the grocery store because unscrupulous merchants would charge the same amount for small fruits as for large. All of the scales in grocery store produce markets measure in the same unit, and all of the packages of food are similarly marked in standard units of weight and volume so we can compare prices and value.

There are a lot of advantages to taking the trouble to extend this system to social value. I suppose every one of these points could be a chapter in a book:

  • First, investing in scientific measurement reduces data volume to a tiny fraction of what we start with, not only with no loss of information but with the introduction of additional information telling us how confident we can be in the data and exactly what the data specifically mean (see below). That is, all the original information is recoverable from the calibrated measure, which is also qualified with an uncertainty range and a consistency statistic. Inconsistencies can be readily identified and acted on at individual levels.
  • Now the numbers represent something that adds up the way they do, instead of standing for the unknown, differing, and uncontrolled units used in the original counts and percentages.
  • We can take missing data into account, which means we can adapt the indicators used in different situations to specific circumstances without compromising comparability.
  • We know how to gauge the dependability of the data better, meaning that we will not be over-confident about unreliable data, and we won’t waste our time and resources obtaining data of greater precision than we actually need.
  • Furthermore, the indicators themselves are now scaled into a hierarchy that maps the continuum from low to high performance. This map points the way to improvement. The order of things on the scale shows what comes first and how more complex and difficult goals build on simpler and easier ones. The position of a measure on the scale shows what’s been accomplished, what remains to be done, and what to do next.
  • Finally, we have a single metric we can use to price value across the local particulars of individual providers. This is where it becomes possible to see who gives the most bang for the buck, to reward them, to scale up an expanded market for the product, and to monetize returns on investment.

The revolutionary network effects of efficient markets are produced by the common currencies for the exchange of value that emerge out of this context. Improvements rebalancing cost and quality foster deflationary economies that drive more profit from lower costs (think Moore’s law). We gain the efficiency of dramatic reductions in data volume, and the meaningfulness of numbers that stand for something substantively real in the world that we can act on. These combine to lower the cost of transactions, as it now becomes vastly less expensive to find out how much of the social good is available, and what quality it is. Instead of dozens or hundreds of indicators repeated for each company in an industry, and repeated for each division in each company, and all of these repeated for each year or quarter, we have access to all of that information properly contextualized in a succinct, meaningful, and interpretable format for different applications at individual, organizational, industry-wide, national, regional, or global levels of complexity.

That’s likely way too much to digest at once! But it seemed worth saying it all at once in one place, in case anyone might be motivated to get in touch or start efforts in this direction on their own.

Examples of the variety of units in a handy sustainability metrics spreadsheet can be found at the Hess web site (http://www.hess.com/sustainability/performance-data/key-sustainability-metrics): freshwater use in millions or thousands of cubic meters, solid waste and carbon emissions in thousands of tons, natural gas consumption in thousands of gigajoules, electricity consumption in thousands of kilowatt hours; employee union members, layoffs, and turnover as percentages; employee lost time incident rates in hundreds of thousands of hours worked, percentages of female or minority board members, dollars for business performance.

These indicators are chosen with good reasons for use within each specific area of interest. They comprise an intuitive observation model that has face validity. But this is only the start of the work that needs to be done to create the metrics we need if we are to radically multiply the efficiency of social value markets. For an example of how to work from today’s diverse arrays of social value indicators (where each one is presented in its own spreadsheet) toward more meaningful, adaptable, and precise measures, see:

Fisher, W. P., Jr. (2011). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com. Social Science Research Network: http://ssrn.com/abstract=1739386 .

Excerpts and Notes from Goldberg’s “Billions of Drops…”

December 23, 2015

Goldberg, S. H. (2009). Billions of drops in millions of buckets: Why philanthropy doesn’t advance social progress. New York: Wiley.

p. 8:
Transaction costs: “…nonprofit financial markets are highly disorganized, with considerable duplication of effort, resource diversion, and processes that ‘take a fair amount of time to review grant applications and to make funding decisions’ [citing Harvard Business School Case No. 9-391-096, p. 7, Note on Starting a Nonprofit Venture, 11 Sept 1992]. It would be a major understatement to describe the resulting capital market as inefficient.”

A McKinsey study found that nonprofits spend 2.5 to 12 times more raising capital than for-profits do. When administrative costs are factored in, nonprofits spend 5.5 to 21.5 times more.

For-profit and nonprofit funding efforts contrasted on pages 8 and 9.

p. 10:
Balanced scorecard rating criteria

p. 11:
“Even at double-digit annual growth rates, it will take many years for social entrepreneurs and their funders to address even 10% of the populations in need.”

p. 12:
Exhibit 1.5 shows that the percentages of various needs served by leading social enterprises are barely drops in the respective buckets; they range from 0.07% to 3.30%.

pp. 14-16:
Nonprofit funding is not tied to performance. Even when a nonprofit makes the effort to show measured improvement in impact, it does little or nothing to change their funding picture. It appears that there is some kind of funding ceiling implicitly imposed by funders, since nonprofit growth and success seems to persuade capital sources that their work there is done. Mediocre and low performing nonprofits seem to be able to continue drawing funds indefinitely from sympathetic donors who don’t require evidence of effective use of their money.

p. 34:
“…meaningful reductions in poverty, illiteracy, violence, and hopelessness will require a fundamental restructuring of nonprofit capital markets. Such a restructuring would need to make it much easier for philanthropists of all stripes–large and small, public and private, institutional and individual–to fund nonprofit organizations that maximize social impact.”

p. 54:
Exhibit 2.3 is a chart showing that fewer people rose from poverty, and more remained in it or fell deeper into it, in the period of 1988-98 compared with 1969-1979.

pp. 70-71:
Kotter’s (1996) change cycle.

p. 75:
McKinsey’s seven elements of nonprofit capacity and capacity assessment grid.

pp. 94-95:
Exhibits 3.1 and 3.2 contrast the way financial markets reward for-profit performance with the way nonprofit markets reward fund raising efforts.

Financial markets
1. Market aggregates and disseminates standardized data
2. Analysts publish rigorous research reports
3. Investors proactively search for strong performers
4. Investors penalize weak performers
5. Market promotes performance
6. Strong performers grow

Nonprofit markets
1. Social performance is difficult to measure
2. NPOs don’t have resources or expertise to report results
3. Investors can’t get reliable or standardized results data
4. Strong and weak NPOs spend 40 to 60% of time fundraising
5. Market promotes fundraising
6. Investors can’t fund performance; NPOs can’t scale

p. 95:
“…nonprofits can’t possibly raise enough money to achieve transformative social impact within the constraints of the existing fundraising system. I submit that significant social progress cannot be achieved without what I’m going to call ‘third-stage funding,’ that is, funding that doesn’t suffer from disabling fragmentation. The existing nonprofit capital market is not capable of [p. 97] providing third-stage funding. Such funding can arise only when investors are sufficiently well informed to make big bets at understandable and manageable levels of risk. Existing nonprofit capital markets neither provide investors with the kinds of information needed–actionable information about nonprofit performance–nor provide the kinds of intermediation–active oversight by knowledgeable professionals–needed to mitigate risk. Absent third-stage funding, nonprofit capital will remain irreducibly fragmented, preventing the marshaling of resources that nonprofit organizations need to make meaningful and enduring progress against $100 million problems.”

pp. 99-114:
Text and diagrams on innovation, market adoption, transformative impact.

p. 140:
Exhibit 4.2: Capital distribution of nonprofits, highlighting mid-caps

pages 192-3 make the case for the difference between a regular market and the current state of philanthropic, social capital markets.

p. 192:
“So financial markets provide information investors can use to compare alternative investment opportunities based on their performance, and they provide a dynamic mechanism for moving money away from weak performers and toward strong performers. Just as water seeks its own level, markets continuously recalibrate prices until they achieve a roughly optimal equilibrium at which most companies receive the ‘right’ amount of investment. In this way, good companies thrive and bad ones improve or die.
“The social sector should work the same way. .. But philanthropic capital doesn’t flow toward effective nonprofits and away from ineffective nonprofits for a simple reason: contributors can’t tell the difference between the two. That is, philanthropists just don’t [p. 193] know what various nonprofits actually accomplish. Instead, they only know what nonprofits are trying to accomplish, and they only know that based on what the nonprofits themselves tell them.”

p. 193:
“The signs that the lack of social progress is linked to capital market dysfunctions are unmistakable: fundraising remains the number-one [p. 194] challenge of the sector despite the fact that nonprofit leaders divert some 40 to 60% of their time from productive work to chasing after money; donations raised are almost always too small, too short, and too restricted to enhance productive capacity; most mid-caps are ensnared in the ‘social entrepreneur’s trap’ of focusing on today and neglecting tomorrow; and so on. So any meaningful progress we could make in the direction of helping the nonprofit capital market allocate funds as effectively as the private capital market does could translate into tremendous advances in extending social and economic opportunity.
“Indeed, enhancing nonprofit capital allocation is likely to improve people’s lives much more than, say, further increasing the total amount of donations. Why? Because capital allocation has a multiplier effect.”

“If we want to materially improve the performance and increase the impact of the nonprofit sector, we need to understand what’s preventing [p. 195] it from doing a better job of allocating philanthropic capital. And figuring out why nonprofit capital markets don’t work very well requires us to understand why the financial markets do such a better job.”

p. 197:
“When all is said and done, securities prices are nothing more than convenient approximations that market participants accept as a way of simplifying their economic interactions, with a full understanding that market prices are useful even when they are way off the mark, as they so often are. In fact, that’s the whole point of markets: to aggregate the imperfect and incomplete knowledge held by vast numbers of traders about much various securities are worth and still make allocation choices that are better than we could without markets.
“Philanthropists face precisely the same problem: how to make better use of limited information to maximize output, in this case, social impact. Considering the dearth of useful tools available to donors today, the solution doesn’t have to be perfect or even all that good, at least at first. It just needs to improve the status quo and get better over time.
“Much of the solution, I believe, lies in finding useful adaptations of market mechanisms that will mitigate the effects of the same lack of reliable and comprehensive information about social sector performance. I would even go so far as to say that social enterprises can’t hope to realize their ‘one day, all children’ visions without a funding allociation system that acts more like a market.
“We can, and indeed do, make incremental improvements in nonprofit funding without market mechanisms. But without markets, I don’t see how we can fix the fragmentation problem or produce transformative social impact, such as ensuring that every child in America has a good education. The problems we face are too big and have too many moving parts to ignore the self-organizing dynamics of market economics. As Thomas Friedman said about the need to impose a carbon tax at a time of falling oil prices, ‘I’ve wracked my brain trying to think of ways to retool America around clean-power technologies without a price signal–i.e., a tax–and there are no effective ones.”

p. 199:
“Prices enable financial markets to work the way nonprofit capital markets should–by sending informative signals about the most effective organizations so that money will flow to them naturally..”

p. 200:
[Quotes Kurtzman citing De Soto on the mystery of capital. Also see p. 209, below.]
“‘Solve the mystery of capital and you solve many seemingly intractable problems along with it.'”
[That’s from page 69 in Kurtzman, 2002.]

p. 201:
[Goldberg says he’s quoting Daniel Yankelovich here, but the footnote does not appear to have anything to do with this quote:]
“‘The first step is to measure what can easily be measured. The second is to disregard what can’t be measured, or give it an arbitrary quantitative value. This is artificial and misleading. The third step is to presume that what can’t be measured easily isn’t very important. This is blindness. The fourth step is to say that what can’t be easily measured really doesn’t exist. This is suicide.'”

Goldberg gives example here of $10,000 invested witha a 10% increase in value, compared with $10,000 put into a nonprofit. “But if the nonprofit makes good use of the money and, let’s say, brings the reading scores of 10 elementary school students up from below grade level to grade level, we can’t say how much my initial investment is ‘worth’ now. I could make the argument that the value has increased because the students have received a demonstrated educational benefit that is valuable to them. Since that’s the reason I made the donation, the achievement of higher scores must have value to me, as well.”

p. 202:
Goldberg wonders whether donations to nonprofits would be better conceived as purchases than investments.

p. 207:
Goldberg quotes Jon Gertner from the March 9, 2008, issue of the New York Times Magazine devoted to philanthropy:

“‘Why shouldn’t the world’s smartest capitalists be able to figure out more effective ways to give out money now? And why shouldn’t they want to make sure their philanthropy has significant social impact? If they can measure impact, couldn’t they get past the resistance that [Warren] Buffet highlighted and finally separate what works from what doesn’t?'”

p. 208:
“Once we abandon the false notions that financial markets are precision instruments for measuring unambiguous phenomena, and that the business and nonproft sectors are based in mutually exclusive principles of value, we can deconstruct the true nature of the problems we need to address and adapt market-like mechanisms that are suited to the particulars of the social sector.
“All of this is a long way (okay, a very long way) of saying that even ordinal rankings of nonprofit investments can have tremendous value in choosing among competing donation opportunities, especially when the choices are so numerous and varied. If I’m a social investor, I’d really like to know which nonprofits are likely to produce ‘more’ impact and which ones are likely to produce ‘less.'”

“It isn’t necessary to replicate the complex working of the modern stock markets to fashion an intelligent and useful nonprofit capital allocation mechanism. All we’re looking for is some kind of functional indication that would (1) isolate promising nonprofit investments from among the confusing swarm of too many seemingly worthy social-purpose organizations and (2) roughly differentiate among them based on the likelihood of ‘more’ or ‘less’ impact. This is what I meant earlier by increasing [p. 209] signals and decreasing noise.”

p. 209:
Goldberg apparently didn’t read De Soto, as he says that the mystery of capital is posed by Kurtzman and says it is solved via the collective intelligence and wisdom of crowds. This completely misses the point of the crucial value that transparent representations of structural invariance hold in market functionality. Goldberg is apparently offering a loose kind of market for which there is an aggregate index of stocks for nonprofits that are built up from their various ordinal performance measures. I think I find a better way in my work, building more closely from De Soto (Fisher, 2002, 2003, 2005, 2007, 2009a, 2009b).

p. 231:
Goldberg quotes Harvard’s Allen Grossman (1999) on the cost-benefit boundaries of more effective nonprofit capital allocation:

“‘Is there a significant downside risk in restructuring some portion of the philanthropic capital markets to test the effectiveness of performance driven philanthropy? The short answer is, ‘No.’ The current reality is that most broad-based solutions to social problems have eluded the conventional and fragmented approaches to philanthropy. It is hard to imagine that experiments to change the system to a more performance driven and rational market would negatively impact the effectiveness of the current funding flows–and could have dramatic upside potential.'”

p. 232:
Quotes Douglas Hubbard’s How to Measure Anything book that Stenner endorsed, and Linacre and I didn’t.

p. 233:
Cites Stevens on the four levels of measurement and uses it to justify his position concerning ordinal rankings, recognizing that “we can’t add or subtract ordinals.”

pp. 233-5:
Justifies ordinal measures via example of Google’s PageRank algorithm. [I could connect from here using Mary Garner’s (2009) comparison of PageRank with Rasch.]

p. 236:
Goldberg tries to justify the use of ordinal measures by citing their widespread use in social science and health care. He conveniently ignores the fact that virtually all of the same problems and criticisms that apply to philanthropic capital markets also apply in these areas. In not grasping the fundamental value of De Soto’s concept of transferable and transparent representations, and in knowing nothing of Rasch measurement, he was unable to properly evaluate to potential of ordinal data’s role in the formation of philanthropic capital markets. Ordinal measures aren’t just not good enough, they represent a dangerous diversion of resources that will be put into systems that take on lives of their own, creating a new layer of dysfunctional relationships that will be hard to overcome.

p. 261 [Goldberg shows here his complete ignorance about measurement. He is apparently totally unaware of the work that is in fact most relevant to his cause, going back to Thurstone in 1920s, Rasch in the 1950s-1970s, and Wright in the 1960s to 2000. Both of the problems he identifies have long since been solved in theory and in practice in a wide range of domains in education, psychology, health care, etc.]:
“Having first studied performance evaluation some 30 years ago, I feel confident in saying that all the foundational work has been done. There won’t be a ‘eureka!’ breakthrough where someone finally figures out the one true way to guage nonprofit effectiveness.
“Indeed, I would venture to say that we know virtually everything there is to know about measuring the performance of nonprofit organizations with only two exceptions: (1) How can we compare nonprofits with different missions or approaches, and (2) how can we make actionable performance assessments common practice for growth-ready mid-caps and readily available to all prospective donors?”

p. 263:
“Why would a social entrepreneur divert limited resources to impact assessment if there were no prospects it would increase funding? How could an investor who wanted to maximize the impact of her giving possibly put more golden eggs in fewer impact-producing baskets if she had no way to distinguish one basket from another? The result: there’s no performance data to attract growth capital, and there’s no growth capital to induce performance measurement. Until we fix that Catch-22, performance evaluation will not become an integral part of social enterprise.”

pp. 264-5:
Long quotation from Ken Berger at Charity Navigator on their ongoing efforts at developing an outcome measurement system. [wpf, 8 Nov 2009: I read the passage quoted by Goldberg in Berger’s blog when it came out and have been watching and waiting ever since for the new system. wpf, 8 Feb 2012: The new system has been online for some time but still does not include anything on impacts or outcomes. It has expanded from a sole focus on financials to also include accountability and transparency. But it does not yet address Goldberg’s concerns as there still is no way to tell what works from what doesn’t.]

p. 265:
“The failure of the social sector to coordinate independent assets and create a whole that exceeds the sum of its parts results from an absence of.. platform leadership’: ‘the ability of a company to drive innovation around a particular platform technology at the broad industry level.’ The object is to multiply value by working together: ‘the more people who use the platform products, the more incentives there are for complement producers to introduce more complementary products, causing a virtuous cycle.'” [Quotes here from Cusumano & Gawer (2002). The concept of platform leadership speaks directly to the system of issues raised by Miller & O’Leary (2007) that must be addressed to form effective HSN capital markets.]

p. 266:
“…the nonprofit sector has a great deal of both money and innovation, but too little available information about too many organizations. The result is capital fragmentation that squelches growth. None of the stakeholders has enough horsepower on its own to impose order on this chaos, but some kind of realignment could release all of that pent-up potential energy. While command-and-control authority is neither feasible nor desirable, the conditions are ripe for platform leadership.”

“It is doubtful that the IMPEX could amass all of the resources internally needed to build and grow a virtual nonprofit stock market that could connect large numbers of growth-capital investors with large numbers of [p. 267] growth-ready mid-caps. But it might be able to convene a powerful coalition of complementary actors that could achieve a critical mass of support for performance-based philanthropy. The challenge would be to develop an organization focused on filling the gaps rather than encroaching on the turf of established firms whose participation and innovation would be required to build a platform for nurturing growth of social enterprise..”

p. 268-9:
Intermediated nonprofit capital market shifts fundraising burden from grantees to intermediaries.

p. 271:
“The surging growth of national donor-advised funds, which simplify and reduce the transaction costs of methodical giving, exemplifies the kind of financial innovation that is poised to leverage market-based investment guidance.” [President of Schwab Charitable quoted as wanting to make charitable giving information- and results-driven.]

p. 272:
Rating agencies and organizations: Charity Navigator, Guidestar, Wise Giving Alliance.
Online donor rankings: GlobalGiving, GreatNonprofits, SocialMarkets
Evaluation consultants: Mathematica

Google’s mission statement: “to organize the world’s information and make it universally accessible and useful.”

p. 273:
Exhibit 9.4 Impact Index Whole Product
Image of stakeholders circling IMPEX:
Trading engine
Listed nonprofits
Data producers and aggregators
Trading community
Researchers and analysts
Investors and advisors
Government and business supporters

p. 275:
“That’s the starting point for replication [of social innovations that work]: finding and funding; matching money with performance.”

[WPF bottom line: Because Goldberg misses De Soto’s point about transparent representations resolving the mystery of capital, he is unable to see his way toward making the nonprofit capital markets function more like financial capital markets, with the difference being the focus on the growth of human, social, and natural capital. Though Goldberg intuits good points about the wisdom of crowds, he doesn’t know enough about the flaws of ordinal measurement relative to interval measurement, or about the relatively easy access to interval measures that can be had, to do the job.]

References

Cusumano, M. A., & Gawer, A. (2002, Spring). The elements of platform leadership. MIT Sloan Management Review, 43(3), 58.

De Soto, H. (2000). The mystery of capital: Why capitalism triumphs in the West and fails everywhere else. New York: Basic Books.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2003). Measurement and communities of inquiry. Rasch Measurement Transactions, 17(3), 936-8 [http://www.rasch.org/rmt/rmt173.pdf].

Fisher, W. P., Jr. (2005). Daredevil barnstorming to the tipping point: New aspirations for the human sciences. Journal of Applied Measurement, 6(3), 173-9 [http://www.livingcapitalmetrics.com/images/FisherJAM05.pdf].

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-3 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In M. Wilson, K. Draney, N. Brown & B. Duckor (Eds.), Advances in Rasch Measurement, Vol. Two (p. in press [http://www.livingcapitalmetrics.com/images/BringingHSN_FisherARMII.pdf]). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2009b, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement (Elsevier), 42(9), 1278-1287.

Garner, M. (2009, Autumn). Google’s PageRank algorithm and the Rasch measurement model. Rasch Measurement Transactions, 23(2), 1201-2 [http://www.rasch.org/rmt/rmt232.pdf].

Grossman, A. (1999). Philanthropic social capital markets: Performance driven philanthropy (Social Enterprise Series 12 No. 00-002). Harvard Business School Working Paper.

Kotter, J. (1996). Leading change. Cambridge, Massachusetts: Harvard Business School Press.

Kurtzman, J. (2002). How the markets really work. New York: Crown Business.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-34.

With Reich in spirit, but with a different sense of the problem and its solution

October 4, 2015

In today’s editorial in the San Francisco Chronicle, Robert Reich seeks some way of defining a solution to the pressing problems of how globalization and technological changes have made American workers less competitive. He rightly says that “reversing the scourge of widening inequality requires reversing the upward distributions [of income] within the rules of the market, and giving average people the bargaining power they need to get a larger share of the gains from growth.”

But Reich then says that the answer to this problem lies in politics, not economics. As I’ve pointed out before in this blog, focusing on marshaling political will is part of the problem, not part of the solution. Historically, politicians do not lead, they follow. As is demonstrated across events as diverse as the Arab Spring and the Preemption Act of 1841, mass movements of people have repeatedly demanded ways of cutting through the Gordian knots of injustice. And just as the political “leadership” across the Middle East and in the early U.S. dragged its feet, obstructed, and violently opposed change until it was already well underway, so, too, will that pattern repeat itself again in the current situation of inequitable income distribution.

The crux of the problem is that no one can give average people anything, not freedom (contra Dylan’s line in Blowin’ in the Wind about “allowing” people to be free) and certainly not a larger share of the gains from growth. As the old saying goes, you can lead a horse to water, but you can’t make it drink. People have to take what’s theirs. They have to want it, they have to struggle for it, and they have to pay for it, or they cannot own it and it will never be worth anything to them.

It is well known that a lack of individual property rights doomed communism and socialism because when everything is owned collectively by everyone, no one takes responsibility for it. The profit motive has the capacity to drive people to change things. The problem is not in profit itself. If birds and bees and trees and grasses did not profit from the sun, soil, and rain, there would be no life. The problem is in finding how to get a functional, self-sustaining economic ecology off the ground, not in unrealistically trying to manipulate and micromanage every detail.

The fundamental relevant characteristic of the profits being made today from intellectual property rights is that our individual rights to our own human and social capital are counter-productively restricted and undeveloped. How can it be that no one has any idea how much literacy or health capital they have, or what it is worth?! We have a metric system that tells us how much real estate and manufactured capital we own, and we can price it. But despite the well-established scientific facts of decades of measurement science research and practice, none of us can say, “I own x number of shares of stock in intellectual, literacy, or community capital, that have a value of x dollars in today’s market.” We desperately need an Intangible Assets Metric System, and the market rules, roles, and responsibilities that will make it impossible to make a profit while destroying human, social, and natural capital.

In this vein, what Reich gets absolutely correct is hidden inside his phrase, “within the rules of the market.” As I’ve so often repeated in this blog, capitalism is not inherently evil; it is, rather, unfinished. The real evil is in prolonging the time it takes to complete it. As was so eloquently stated by Miller and O’Leary (2007, p. 710):

“Markets are not spontaneously generated by the exchange activity of buyers and sellers. Rather, skilled actors produce institutional arrangements, the rules, roles and relationships that make market exchange possible. The institutions define the market, rather than the reverse.”

We have failed to set up the institutional arrangements needed to define human, social, and natural capital markets. The problem is that we cannot properly manage three of the four major forms of capital (human, social, and natural, with the fourth being manufactured/property) because we do not measure them in a common language built into scientifically, economically, legally and financially accountable titles, deeds, and other instruments.

And so, to repeat another one of my ad nauseum broken record nostrums, the problem is the problem. As long as we keep defining problems in the way we always have, as matters of marshalling political will, we will inadvertently find ourselves contributing more to prolonging tragic and needless human suffering, social discontent, and environmental degradation.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-734.

Living Capital Metrics for Financial and Sustainability Accounting Standards

May 1, 2015

I was very happy a few days ago to come across Jane Gleeson-White’s new book, Six Capitals, or Can Accountants Save the Planet? Rethinking Capitalism for the 21st Century. The special value for me in this book comes in the form of an accessible update on what’s been going on in the world of financial accounting standards. Happily, there’s been a lot of activity (check out, for instance, Amato & White, 2013; Rogers & White, 2015). Less fortunately, the activity seems to be continuing to occur in the same measurement vacuum it always has, despite my efforts in this blog to broaden the conversation to include rigorous measurement theory and practice.

But to back up a bit, recent events around sustainability metric standards don’t seem to be connected to previous controversies around financial standards and economic modeling, which were more academically oriented to problems of defining and expressing value. Gleeson-White doesn’t cite any of the extensive literature in those areas (for instance, Anielski, 2007; Baxter, 1979; Economist, 2010; Ekins, 1992, 1999; Ekins, Dresner, & Dahlstrom, 2008; Ekins, Hillman, & Hutchins, 1992; Ekins & Voituriez, 2009; Fisher, 2009b, 2009c, 2011; Young & Williams, 2010). Valuation is still a problem, of course, as is the analogy between accounting standards and scientific standards (Baxter, 1979). But much of the sensitivity of the older academic debate over accounting standards seems to have been lost in the mad, though well-intentioned, rush to devise metrics for the traditionally externalized nontraditional forms of capital.

Before addressing the thousands of metrics in circulation and the science that needs to be brought to bear on them (the ongoing theme of posts in this blog), some attention to terminology is important. Gleeson-White refers to six capitals (manufactured, liquid, intellectual, human, social, and natural), in contrast with Ekins (1992; Ekins, et al., 2008), who describes four (manufactured, human, social, and natural). Gleeson-White’s liquid capital is cash money, which can be invested in capital (a means of producing value via ongoing services) and which can be extracted as a return on capital, but is not itself capital, as is shown by the repeated historical experience in many countries of printing money without stimulating economic growth and producing value. Of her remaining five forms of capital, intellectual capital is a form of social capital that can satisfactorily be categorized alongside the other forms of organization-level properties and systems involving credibility and trust.

On pages 209-227, Gleeson-White takes up questions relevant to the measurement and information quality topics of this blog. The context here is informed by the International Integrated Reporting Council’s (IIRC) December 2013 framework for accounting reports integrating all forms of capital (Amato & White, 2013), and by related efforts of the Sustainability Accounting Standards Board (SASB) (Rogers & White, 2015). Following the IIRC, Gleeson-White asserts that

“Not all the new capitals can be quantified, yet or perhaps ever–for example, intellectual, human and social capital, much of natural capital–and so integrated reports are not expected to provide quantitative measures of each of the capitals.”

Of course, this opinion flies in the face of established evidence and theory accepted by both metrologists (weights and measures standards engineers and physicists) and psychometricians as to the viability of rigorous measurement standards for the outcomes of education, health care, social services, natural resource management, etc. (Fisher, 2009b, 2011, 2012a, 2012b; Fisher & Stenner, 2011a, 2013, 2015; Fisher & Wilson, 2015; Mari & Wilson, 2013; Pendrill, 2014; Pendrill & Fisher, 2013, 2015; Wilson, 2013; Wilson, Mari, Maul, & Torres Irribarra, 2015). Pendrill (2014, p. 26), an engineer, physicist, and past president of the European Association of National Metrology Institutes, for instance, states that “The Rasch approach…is not simply a mathematical or statistical approach, but instead [is] a specifically metrological approach to human-based measurement.” As is repeatedly shown in this blog, access to scientific measures sets the stage for a dramatic transformation of the potential for succeeding in the goal of rethinking capitalism.

Next, Gleeson-White’s references to several of the six capitals as the “living” capitals (p. 193) is a literal reference to the fact that human, social, and natural capital are all carried by people, organizations/communities, and ecosystems. The distinction between dead and living capital elaborated by De Soto (2000) and Fisher (2002, 2007, 2010b, 2011), which involves making any form of capital fungible by representing it in abstract forms negotiable in banks and courts of law, is not taken into account, though this would seem to be a basic requirement that must be fulfilled before the rethinking of capitalism could said to have been accomplished.

Gleeson-White raises the pointed question as to exactly how integrated reporting is supposed to provoke positive growth in the nontraditional forms of capital. The concept of an economic framework integrating all forms of capital relative to the profit motive, as described in Ekins’ work, for instance, and as is elaborated elsewhere in this blog, seems just over the horizon, though repeated mention is made of natural capitalism (Hawken, Lovins, & Lovins, 1999). The posing of the questions provided by Gleeson-White (pp. 216-217) is priceless, however:

“…given integrated reporting’s purported promise to contribute to sustainable development by encouraging more efficient resource allocation, how might it actually achieve this for natural and social capitals on their own terms? It seems integrated reporting does nothing to address a larger question of resource allocation….”

“To me the fact that integrated reporting cannot address such questions suggests that as with the example of human capital, its promise to foster efficient resource allocation pertains only to financial capital and not to the other capitals. If we accept that the only way to save our societies and planet is to reconceive them in terms of capital, surely the efficient valuing and allocation of all six capitals must lie at the heart of any economics and accounting for the planet’s scarce resources in the twenty-first century.
“There is a logical inconsistency here: integrated reporting might be the beginning of a new accounting paradigm, but for the moment it is being practiced by an old-paradigm corporation: essentially, one obliged to make a return on financial capital at the cost of the other capitals.”

The goal requires all forms of capital to be integrated into the financial bottom line. Where accounting for manufactured capital alone burns living capital resources for profit, a comprehensive capital accounting framework defines profit in terms of reduced waste. This is a powerful basis for economics, as waste is the common root cause of human suffering, social discontent and environmental degradation (Hawken, Lovins, & Lovins, 1999).

Multiple bottom lines are counter-productive, as they allow managers the option of choosing which stakeholder group to satisfy, often at the expense of the financial viability of the firm (Jensen, 2001; Fisher, 2010a). Economic sustainability requires that profits be legally, morally, and scientifically contingent on a balance of powers distributed across all forms of capital. Though the devil will no doubt lurk in the details, there is increasing evidence that such a balance of powers can be negotiated.

A key point here not brought up by Gleeson-White concerns the fact that markets are not created by exchange activity, but rather by institutionalized rules, roles, and responsibilities (Miller & O’Leary, 2007) codified in laws, mores, technologies, and expectations. Translating historical market-making activities as they have played out relative to manufactured capital in the new domains of human, social, and natural capital faces a number of significant challenges, adapting to a new way of thinking about tests, assessments, and surveys foremost among them (Fisher & Stenner, 2011b).

One of the most important contributions advanced measurement theory and practice (Rasch, 1960; Wright, 1977; Andrich, 1988, 2004; Fisher & Wright, 1994; Wright & Stone, 1999; Bond & Fox, 2007; Wilson, 2005; Engelhard, 2012; Stenner, Fisher, Stone, & Burdick, 2013) can make to the process of rethinking capitalism involves the sorting out of the myriad metrics that have erupted in the last several years. Gleeson-White (p. 223) reports, for instance, that the Bloomberg financial information network now has over 750 ESG (Environmental, Social, Governance) data fields, which were extracted from reports provided by over 5,000 companies in 52 countries.  Similarly, Rogers and White (2015) say that

“…today there are more than 100 organizations offering more than 400 corporate sustainability ratings products that assess some 50,000 companies on more than 8,000 metrics of environmental, social and governance (ESG) performance.”

As is also the case with the UN Millennium Development Goals (Fisher, 2011b), the typical use of these metrics as single-item “quantities” is based in counts of relevant events. This procedure misses the basic point that counts of concrete things in the world are not measures. Is it not obvious that I can have ten rocks to your two, and you can still have more rock than I do? The same thing applies to any kind of performance ratings, survey responses, or test scores. We assign the same numeric increase to every addition of one more count, but hardly anyone experimentally tests the hypothesis that the counts all work together to measure the same thing. Those who think there’s no need for precision science in this context are ignoring the decades of successful and widespread technical work in this area, at their own risk.

The repetition of history here is fascinating. As Ashworth (2004, p. 1,314) put it, historically, “The requirements of increased trade and the fiscal demands of the state fuelled the march toward a regular form of metrology.” For instance, in 1875 it was noted that “the existence of quantitative correlations between the various forms of energy, imposes upon men of science the duty of bringing all kinds of physical quantity to one common scale of comparison” (Everett, 1875, p. 9). The moral and economic  value of common scales was recognized during the French revolution, when, Alder (2002, p. 32) documents, it was asked:

“Ought not a single nation have a uniform set of measures, just as a soldier fought for a single patrie? Had not the Revolution promised equality and fraternity, not just for France, but for all the people of the world? By the same token, should not all of the world’s people use a single set of weights and measures to encourage peaceable commerce, mutual understanding, and the exchange of knowledge? That was the purpose of measuring the world.”

The value of rigorously measuring human, social and natural capital includes meaningfully integrating qualitative substance with quantitative convenience, reduced data volume, augmenting measures with uncertainty and consistency indexes, and the capacity to take missing data into account (making possible instrument equating, item banking, etc.)  In contrast with the usual methods, rigorous science demands that experiments determine which indicators cohere to measure the same thing by repeatedly giving the same values across samples, over time and space, and across subsets of indicators. Beyond such data-based results, advanced theory makes it possible to arrive at explanatory, predictive methods that add a whole new layer of efficiency to the generation of indicators (de Boeck & Wilson, 2004; Stenner, et al., 2013).

Finally, Gleeson-White (pp. 220-221) reports that “In July 2011, the SASB [Sustainability Accounting Standards Board] was launched in the United States to create standardized measures for the new capitals.” “Founded by environmental engineer and sustainability expert Jean Rogers in San Francisco, SASB is creating a full set of industry-specific standards for sustainability accounting, with the aim of making this information more consistent and comparable.” As of May 2014, the SASB vice chair is Mary Schapiro, former SEC chair, and the chairman of SASB is Michael Bloomfield, former mayor of NYC and founder of the financial information empire. The “SASB is developing nonfinancial standards for eighty-nine industries grouped in ten different sectors and aims to have completed this grueling task by February 2015. It is releasing each set of metrics as they are completed.”

Like the SASB and other groups, Gleeson-White (p. 222) reports, Bloomberg

“aims to use its metrics to start ‘standardizing the discourse around sustainability, so we’re all talking about the same things in the same way,’ as Bloomberg’s senior sustainability strategist Andrew Park put it. What companies ‘desperately want,’ he says, is ‘a legitimate voice’ to tell them: ‘This is what you need to do. You exist in this particular sector. Here are the metrics that you need to be reporting out on. So SASB will provide that. And we think that’s important, because that will help clean up the metrics that ultimately the finance community will start using.’
“Bloomberg wants to price environmental, social and governance externalities to legitimize them in the eyes of financial capital.”

Gleeson-White (p. 225) continues, saying

“Bloomberg wants to do more generally what Trucost did for Puma’s natural capital inputs: create standardized measures for the new capitals–such as ecosystem services and social impacts–so that this information can be aggregated and used by investors. Park and Ravenel call the failure to value clean air, water, stable coastlines and other environmental goods ‘as much a failure to measure as it is a market failure per se–one that could be addressed in part by providing these ‘unpriced’ resources with quantitative parameters that would enable their incorporation into market mechanisms. Such mechanisms could then appropriately ‘regulate’ the consumption of those resources.'”

Integrating well-measured living capitals into the context of appropriately configured institutional rules, roles, and responsibilities for efficient markets (Fisher, 2010b) should indeed involve a capacity to price these resources quantitatively, though this capacity alone would likely prove insufficient to the task of creating the markets (Miller & O’Leary, 2007; Williamson, 1981, 1991, 2005). Rasch’s (1960, pp. 110-115) deliberate patterning of his measurement models on the form of Maxwell’s equations for Newton’s Second Law provides a mathematical basis for connecting psychometrics with both geometry and natural laws, as well as with the law of supply and demand (Fisher, 2010c, 2015; Fisher & Stenner, 2013a).

This perspective on measurement is informed by an unmodern or amodern, post-positivist philosophy (Dewey, 2012; Latour, 1990, 1993), as opposed to a modern and positivist, or postmodern and anti-positivist, philosophy (Galison, 1997). The essential difference is that neither a universalist nor a relativist perspective is necessary to the adoption of practices of traceability to metrological standards. Rather, focusing on local, situated, human relationships, as described by Wilson (2004) in education, for instance, offers a way of resolving the false dilemma of that dichotomous contrast. As Golinski (2012, p. 35) puts it, “Practices of translation, replication, and metrology have taken the place of the universality that used to be assumed as an attribute of singular science.” Haraway (1996, pp. 439-440) harmonizes, saying “…embedded relationality is the prophylaxis for both relativism and transcendance.” Latour (2005, pp. 228-229) elaborates, saying:

“Standards and metrology solve practically the question of relativity that seems to intimidate so many people: Can we obtain some sort of universal agreement? Of course we can! Provided you find a way to hook up your local instrument to one of the many metrological chains whose material network can be fully described, and whose cost can be fully determined. Provided there is also no interruption, no break, no gap, and no uncertainty along any point of the transmission. Indeed, traceability is precisely what the whole of metrology is about! No discontinuity allowed, which is just what ANT [Actor Network Theory] needs for tracing social topography. Ours is the social theory that has taken metrology as the paramount example of what it is to expand locally everywhere, all while bypassing the local as well as the universal. The practical conditions for the expansion of universality have been opened to empirical inquiries. It’s not by accident that so much work has been done by historians of science into the situated and material extension of universals. Given how much modernizers have invested into universality, this is no small feat.
“As soon as you take the example of scientific metrology and standardization as your benchmark to follow the circulation of universals, you can do the same operation for other less traceable, less materialized circulations: most coordination among agents is achieved through the dissemination of quasi-standards.”

As Rasch (1980: xx) understood, “this is a huge challenge, but once the problem has been formulated it does seem possible to meet it.” Though some metrologically informed traceability networks have begun to emerge in education and health care (for instance, Fisher & Stenner, 2013, 2015; Stenner & Fisher, 2013), virtually everything remains to be done to make the coordination across stakeholders as fully elaborated as the standards in the natural sciences.

References

Alder, K. (2002). The measure of all things: The seven-year odyssey and hidden error that transformed the world. New York: The Free Press.

Amato, N., & White, S. (2013, December 7). IIRC releases International Integrated Reporting Framework. Journal of Accountancy. Retrieved from http://www.journalofaccountancy.com/news/2013/dec/20139207.html

Andrich, D. (1988). Sage University Paper Series on Quantitative Applications in the Social Sciences. Vol. series no. 07-068: Rasch models for measurement. Beverly Hills, California: Sage Publications.

Andrich, D. (2004, January). Controversy and the Rasch model: A characteristic of incompatible paradigms? Medical Care, 42(1), I-7–I-16.

Andrich, D. (2010). Sufficiency and conditional estimation of person parameters in the polytomous Rasch model. Psychometrika, 75(2), 292-308.

Anielski, M. (2007). The economics of happiness: Building genuine wealth. Gabriola, British Columbia: New Society Publishers.

Ashworth, W. J. (2004, 19 November). Metrology and the state: Science, revenue, and commerce. Science, 306(5700), 1314-1317.

Baxter, W. T. (1979). Accounting standards: Boon or curse? In The Emmanuel Saxe distinguished lectures in accounting. http://newman.baruch.cuny.edu/digital/saxe/saxe_1978/baxter_79.htm.

Bond, T., & Fox, C. (2007). Applying the Rasch model: Fundamental measurement in the human sciences, 2d edition. Mahwah, New Jersey: Lawrence Erlbaum Associates.

De Boeck, P., & Wilson, M. (Eds.). (2004). Explanatory item response models: A generalized linear and nonlinear approach. Statistics for Social and Behavioral Sciences). New York: Springer-Verlag.

De Soto, H. (2000). The mystery of capital: Why capitalism triumphs in the West and fails everywhere else. New York: Basic Books.

Dewey, J. (2012). Unmodern philosophy and modern philosophy (P. Deen, Ed.). Carbondale, Illinois: Southern Illinois University Press.

Editorial. (2010, 10 June). Accounting standards: To FASB or not to FASB? The Economist, http://www.economist.com/node/16319655.

Ekins, P. (1992). A four-capital model of wealth creation. In P. Ekins & M. Max-Neef (Eds.), Real-life economics: Understanding wealth creation (pp. 147-155). London: Routledge.

Ekins, P. (1999). Economic growth and environmental sustainability: The prospects for green growth. New York: Routledge.

Ekins, P., Dresner, S., & Dahlstrom, K. (2008, March/April). The four-capital method of sustainable development evaluation. European Environment, 18(2), 63-80.

Ekins, P., Hillman, M., & Hutchison, R. (1992). The Gaia atlas of green economics (Foreword by Robert Heilbroner). New York: Anchor Books.

Ekins, P., & Voituriez, T. (2009). Trade, globalization and sustainability impact assessment: A critical look at methods and outcomes. London, England: Earthscan Publications Ltd.

Engelhard, G., Jr. (2012). Invariant measurement: Using Rasch models in the social, behavioral, and health sciences. New York: Routledge Academic.

Everett, J. D. (1875). Illustrations of the C. G. S. system of units. London, England: Taylor & Francis.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009a, November 19). Draft legislation on development and adoption of an intangible assets metric system. Retrieved 6 January 2011, from https://livingcapitalmetrics.wordpress.com/2009/11/19/draft-legislation/

Fisher, W. P., Jr. (2009b, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009c). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (Tech. Rep. No. http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC:. National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010a, 22 November). Meaningfulness, measurement, value seeking, and the corporate objective function: An introduction to new possibilities., LivingCapitalMetrics.com, Sausalito, California. Retrieved from http://ssrn.com/abstract=1713467

Fisher, W. P., Jr. (2010b). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital, Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (http://ssrn.com/abstract=2340674).

Fisher, W. P., Jr. (2010c). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics: Conference Series, 238(1), http://iopscience.iop.org/1742-6596/238/1/012016/pdf/1742-6596_238_1_012016.pdf.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2011b). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com. Retrieved 18 January 2011, from Social Science Research Network: http://ssrn.com/abstract=1739386.

Fisher, W. P., Jr. (2012a). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012b, May/June). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2015). A Rasch perspective on the law of supply and demand. Rasch Measurement Transactions, in press.

Fisher, W. P., Jr., Harvey, R. F., & Kilgore, K. M. (1995). New developments in functional assessment: Probabilistic models for gold standards. NeuroRehabilitation, 5(1), 3-25.

Fisher, W. P., Jr., Harvey, R. F., Taylor, P., Kilgore, K. M., & Kelly, C. K. (1995, February). Rehabits: A common language of functional assessment. Archives of Physical Medicine and Rehabilitation, 76(2), 113-122.

Fisher, W. P., Jr., & Stenner, A. J. (2011a, January). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series). Retrieved 12 January 2014, from National Science Foundation: http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36.

Fisher, W. P., Jr., & Stenner, A. J. (2011b, August 31 to September 2). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium, http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf, Jena, Germany.

Fisher, W. P., Jr., & Stenner, A. J. (2013a). On the potential for improved measurement in the human and social sciences. In Q. Zhang & H. Yang (Eds.), Pacific Rim Objective Measurement Symposium 2012 Conference Proceedings (pp. 1-11). Berlin, Germany: Springer-Verlag.

Fisher, W. P., Jr., & Stenner, A. J. (2013b). Overcoming the invisibility of metrology: A reading measurement network for education and the social sciences. Journal of Physics: Conference Series, 459(012024), http://iopscience.iop.org/1742-6596/459/1/012024.

Fisher, W. P., Jr., & Stenner, A. J. (2015). The role of metrology in mobilizing and mediating the language and culture of scientific facts. Journal of Physics Conference Series, 588(012043).

Fisher, W. P., Jr., & Stenner, A. J. (2015). Theory-based metrological traceability in education: A reading measurement network. Measurement, in review.

Fisher, W. P., Jr., & Wilson, M. (2015). Building a productive trading zone in educational assessment research and practice. Pensamiento Educativo, in review.

Fisher, W. P., Jr., & Wright, B. D. (1994). Introduction to probabilistic conjoint measurement theory and applications (W. P. Fisher, Jr., & B. D. Wright, Eds.) [Special issue]. International Journal of Educational Research, 21(6), 559-568.

Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.

Gleeson-White, J. (2015). Six capitals, or can accountants save the planet? Rethinking capitalism for the 21st century. New York: Norton.

Golinski, J. (2012). Is it time to forget science? Reflections on singular science and its history. Osiris, 27(1), 19-36.

Haraway, D. J. (1996). Modest witness: Feminist diffractions in science studies. In P. Galison & D. J. Stump (Eds.), The disunity of science: Boundaries, contexts, and power (pp. 428-441). Stanford, California: Stanford University Press.

Hawken, P., Lovins, A., & Lovins, H. L. (1999). Natural capitalism: Creating the next industrial revolution. New York: Little, Brown, and Co.

Jensen, M. C. (2001, Fall). Value maximization, stakeholder theory, and the corporate objective function. Journal of Applied Corporate Finance, 14(3), 8-21.

Latour, B. (1990). Postmodern? No, simply amodern: Steps towards an anthropology of science. Studies in History and Philosophy of Science, 21(1), 145-71.

Latour, B. (1993). We have never been modern. Cambridge, Massachusetts: Harvard University Press.

Latour, B. (2005). Reassembling the social: An introduction to Actor-Network-Theory. Clarendon Lectures in Management Studies). Oxford, England: Oxford University Press.

Mari, L., & Wilson, M. (2013). A gentle introduction to Rasch measurement models for metrologists. Journal of Physics Conference Series, 459(1), http://iopscience.iop.org/1742-6596/459/1/012002/pdf/1742-6596_459_1_012002.pdf.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-734.

Pendrill, L. (2014, December). Man as a measurement instrument [Special Feature]. NCSLI Measure: The Journal of Measurement Science, 9(4), 22-33.

Pendrill, L., & Fisher, W. P., Jr. (2013). Quantifying human response: Linking metrological and psychometric characterisations of man as a measurement instrument. Journal of Physics: Conference Series, 459, http://iopscience.iop.org/1742-6596/459/1/012057.

Pendrill, L., & Fisher, W. P., Jr. (2015). Counting and quantification: Comparing psychometric and metrological perspectives on visual perceptions of number. Measurement, p. in press. doi: http://dx.doi.org/10.1016/j.measurement.2015.04.010.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Rogers, J., & White, A. (2015, April 28). Focusing corporate sustainability ratings on what matters. Huffington Post. Retrieved from http://www.huffingtonpost.com/jean-rogers/focusing-corporate-sustai_b_7156148.html.

Stenner, A. J., & Fisher, W. P., Jr. (2013). Metrological traceability in the social sciences: A model from reading measurement. Journal of Physics: Conference Series, 459(012025), http://iopscience.iop.org/1742-6596/459/1/012025.

Stenner, A. J., Fisher, W. P., Jr., Stone, M. H., & Burdick, D. S. (2013, August). Causal Rasch models. Frontiers in Psychology: Quantitative Psychology and Measurement, 4(536), 1-14 [doi: 10.3389/fpsyg.2013.00536].

Williamson, O. E. (1981, November). The economics of organization: The transaction cost approach. The American Journal of Sociology, 87(3), 548-577.

Williamson, O. E. (1991). Economic institutions: Spontaneous and intentional governance [Special issue]. Journal of Law, Economics, & Organization: Papers from the Conference on the New Science of Organization, 7, 159-187.

Williamson, O. E. (2005). The economics of governance. American Economic Review, 95(2), 1-18.

Wilson, M. (Ed.). (2004). National Society for the Study of Education Yearbooks. Vol. 103, Part II: Towards coherence between classroom assessment and accountability. Chicago, Illinois: University of Chicago Press.

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Wilson, M. R. (2013). Using the concept of a measurement system to characterize measurement models used in psychometrics. Measurement, 46, 3766-3774.

Wilson, M., Mari, L., Maul, A., & Torres Irribarra, D. (2015). A comparison of measurement concepts across physical science and social science domains: Instrument design, calibration, and measurement. Journal of Physics: Conference Series, 588(012034), http://iopscience.iop.org/1742-6596/588/1/012034.

Wright, B. D. (1977). Solving measurement problems with the Rasch model. Journal of Educational Measurement, 14(2), 97-116 [http://www.rasch.org/memo42.htm].

Wright, B. D. (1999). Fundamental measurement for psychology. In S. E. Embretson & S. L. Hershberger (Eds.), The new rules of measurement: What every educator and psychologist should know (pp. 65-104 [http://www.rasch.org/memo64.htm]). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Wright, B. D., & Stone, M. H. (1999). Measurement essentials. Wilmington, DE: Wide Range, Inc. [http://www.rasch.org/measess/me-all.pdf].

Young, J. J., & Williams, P. F. (2010, August). Sorting and comparing: Standard-setting and “ethical” categories. Critical Perspectives on Accounting, 21(6), 509-521.