Archive for the ‘distributed thinking’ Category

Cartesian problems cannot be solved by Cartesian solutions, no matter where those solutions originate

April 13, 2019

Trying to persuade or educate individuals to change the way they think and act, by pointing to the facts or by making emotional or moral appeals, seems always and everywhere to be the default go-to solution for those interested in addressing social and environmental problems. I suppose that approach works to varying degrees for different issues, but behavior change never occurs on as massive a scale as when it is mediated by a technology that enables people to do something they value.

The meaning of McLuhan’s expression, “the medium is the message,” and the long history of the many ways in which technologies transform cultures, for better and for worse, all seem utterly lost and forgotten when it comes to efforts aimed at provoking culture change. The ongoing discourses of environmental and social justice inevitably always seem to come back to targeting individual decisions and behaviors as the only recourse for effecting change.

But history teaches us that, if we want to change our values, we have to figure out how to embed the new terms in virally communicable metaphors that enthrall imaginations and captivate people’s attention and interest. Cultures turn on shared meanings that make some behaviors more likely than others. Good metaphors (“love is a rose;” “God is love”) organize experience in ways that allow infinite creative variations on the theme while also lending just a bit of structure and predictability to how things play out. We need to root new metaphors embodying shared human values in information infrastructures that operationalize consensus standards as the common currencies in which those values circulate.

Though the ongoing culture wars seem to suggest wildly divergent values in play across communities, research in developmental psychology strongly indicates that these differences are not what they seem. No matter what their politics, people need to feel valued, to have stable identities, to be recognized as someone of worth, to have a place of dignity in a community, to be trusted, and to see that others enjoy all of these qualities as well. Experience shows that these conditions cannot be implemented by a simple decree or force of will. Broad general conditions have to be cultivated in ways that make the emergence of abundant social capital resources more likely.

A point of entry into thinking about how those conditions might be created is provided by a 2010 quote in the Miami Herald from Gus Speth, former Dean of the Yale School of Forestry and Environmental Studies (http://tinyurl.com/y7mqtzzn). Speth recounts his sense that scientific solutions to ecosystem and climate problems are insufficient because the actual causes of the problems are greed, selfishness, and apathy. So he appeals to religious leaders for help.

But Speth’s moral diagnosis is as misconceived and uninformed as his original scientific one. As has been the topic of multiple posts in this blog, many of today’s problems cannot be solved using the same kind of Cartesian dualist thinking that was used in creating those problems. Voluminous citations in those earlier posts tap a large literature in the philosophy, history, and social studies of science describing a diverse array of examples of nondualist ecosystem thinking and acting (for instance, see references below). These works show how technological media fuse, embody, distribute, and enact social, moral, aesthetic, economic, and scientific values in complex multilevel metasystems (systems of systems). Moral values of fairness, for instance, are embedded in the quantitative values of measurement technologies exported from laboratories into markets where they inform economic values in trade.

Our task is to learn from these examples so that we can develop and deploy new languages that resonate with new values in analogous ways across similarly diverse cultural domains. Beauty, meaning, and poetry have to be as important as logic, mathematics, and science. Readily available theory and evidence already show how all of these are playing their roles in the evolving cultural transformation.

And, fortunately for humanity as well as for the earth, the new nondualist noncartesian solutions will not and cannot be primarily an outcome of deliberate intentions and conscious willpower. On the contrary, these integrated problem-solution monads are living, organic, self-organizing embodiments of ideas that captivate imaginations and draw creative, entrepreneurial energies in productive directions.

Of course, this kind of thing has happened many times in the past, though it has not previously emerged as a result of the kind of cultivated orchestration occurring today. Williamson, North, Ostrom, Coase, and others describe the roles institutions have played in setting up the rules, roles, and responsibilities of efficient markets. Today, new institutions are arising in a context of reproducible scientific results supporting ownership of, investments in, and profits harvested from sustainable impacts measured and managed via virally communicable media spreading social contagions of love and care. This is coming about because we all seek and value meaning and beauty right along with the capacity to enjoy life, liberty, and prosperity. However differently we each define and experience meaning and beauty, caring for the unity and sameness of the objects of the conversations that we are enables us to balance harmonies and dissonances in endless variations performed by every imaginable kind of rhythmic and melodic musical ensemble.

So instead of expecting different results from repeated applications of the same dualistic thinking that got us into today’s problems, we need to think and act nondualistically. Instead of assuming that solutions do not themselves already presuppose and embody problems of a certain type, we need to think in terms of integrated problem-solution monads deployed throughout ecosystems like species in symbiotic relationships. This is precisely what’s happened historically with the oil-automobile-highway-plastics-engineering ecosystem, and with the germ-disease-pharmaceutical-public health-medicine ecosystem. In each case, financial, market, accounting, regulatory, legal, educational, and other institutions evolved in tandem with the emerging sociotechnical ecology.

Now we face urgent needs to think and act on previously unheard of scales and levels of complexity. We have to work together and coordinate efforts in social and psychological domains with no previous history of communications capable of functioning at the needed efficiencies.

But merely urging people to live differently will never result in the changes that must be brought about. No matter how compelling the facts, no matter how persuasive the emotional power, and no matter how inspirational the moral argument, individual people and small groups simply cannot create new shared standards of behavior out of thin air. We are all products of our times and our sociocultural environments. People cannot be expected to simply wake up one day and spontaneously transform their habits by an effort of will. Instead, the values of fairness, equity, inclusion, and justice we say we live by must be embedded within the very fabric of everyday life, the way hours, meters, liters, degrees, grams, and volts are now.

That is, measurements read off instruments calibrated in fair units of comparison—measurements mathematically equivalent to those made with the scales of justice, measurements expressed in the common metrics of a new international system of units, and measurements as adaptable to local individual improvisations as they are generally comparable and navigable—have to be built into every institution in just the same way existing units of measurement are. Education, health care, social services, human resource management, environmental solutions—all of these and more need to attend closely to ways in which the objects of conversation can be more systematically expressed in meaningful words. Ecosystem thinking demands that everyone and everything in a system of relationships must be consistently kept in proportionate contact, within ranges of reported uncertainty, instead of being disconnected off into separate incommensurable universes of discourse, as occurs in today’s institutions.

These are all monumentally huge challenges. But much of the hardest work has been underway for decades, with important results and resources spreading into widely used applications often taken for granted in the background of largely unexamined assumptions. These results are now well enough established, and the associated social and environmental problems are so serious, that more can and should be done to put them to use.

The need for new values is indeed urgent, but empty talk and doing more of the same is getting us nowhere, at best, and more often is worsening conditions. Conceptual determinations of reproducible mathematical values embodying people’s lived social and moral values in fungible economic values are not just theoretical possibilities or provisional experimental results. They are longstanding, widely available, and practical, as well as beautiful and meaningful. With attentive cultivation and nurturing, there are abundant reasons for believing in a safe, healthy, happy, and prosperous future for humanity and life on earth.

References

Akera, A. (2007). Constructing a representation for an ecology of knowledge. Social Studies of Science, 37(3), 413-441.

Barney, M., & Fisher, W. P., Jr. (2016, April). Adaptive measurement and assessment. Annual Review of Organizational Psychology and Organizational Behavior, 3, 469-490.

Blok, A., Nakazora, M., & Winthereik, B. R. (2016). Infrastructuring environments. Science as Culture, 25(1), 1-22.

Bowker, G. C. (2016). How knowledge infrastructures learn. In P. Harvey, C. B. Jensen & A. Morita (Eds.), Infrastructures and social complexity: A companion (pp. 391-403). New York: Routledge.

Bowker, G., Timmermans, S., Clarke, A. E., & Balka, E. (Eds). (2015). Boundary objects and beyond: Working with Leigh Star. Cambridge, MA: MIT Press.

Brain, R. (1998). Standards and semiotics. In T. Lenoir (Ed.), Inscribing science: Scientific texts and the materiality of communication (pp. 249-w84). Stanford, California: Stanford University Press.

Cano, S. J., & Hobart, J. C. (2011). The problem with health measurement. Patient Preference and Adherence, 5, 279-290.

Cano, S., Klassen, A. F., & Pusic, A. L. (2009). The science behind quality-of-life measurement: A primer for plastic surgeons. Plastic and Reconstructive Surgery, 123(3), 98e-106e.

Cano, S., Melin, J., Fisher, W. P., Jr., Stenner, A. J., Pendrill, L., & EMPIR NeuroMet 15HLT04 Consortium. (2018). Patient-centred cognition metrology. Journal of Physics: Conference Series, 1065, 072033.

Cano, S., Pendrill, L., Barbic, S., & Fisher, W. P., Jr. (2018). Patient-centred outcome metrology for healthcare decision-making. Journal of Physics: Conference Series, 1044, 012057.

Cano, S., Pendrill, L., Melin, J., & Fisher, W. P., Jr. (2019). Towards consensus measurement standards for patient-centered outcomes. Measurement, in press.

Dawson, T. L. (2002, Summer). A comparison of three developmental stage scoring systems. Journal of Applied Measurement, 3(2), 146-89.

Dawson, T. L. (2002, March). New tools, new insights: Kohlberg’s moral reasoning stages revisited. International Journal of Behavioral Development, 26(2), 154-66.

Dawson, T. L. (2004, April). Assessing intellectual development: Three approaches, one sequence. Journal of Adult Development, 11(2), 71-85.

Dawson, T. L., & Stein, Z. (2011). We are all learning here: Cycles of research and application in adult development. In C. Hoare (Ed.), The Oxford handbook of reciprocal adult development and learning, 2nd Ed. (pp. 447-460). Oxford, England: Oxford University Press.

Fisher, W. P., Jr. (2009, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement: Concerning Foundational Concepts of Measurement Special Issue Section, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009). NIST Critical national need idea White Paper: Metrological infrastructure for human, social, and natural capital (http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC:. National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010, November 22). The birds and the bees of living meaning. LivingCapitalMetrics blog. https://livingcapitalmetrics.wordpress.com/2010/11/22/the-birds-and-the-bees-of-living-meaning/.

Fisher, W. P., Jr. (2010). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital, Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340674).

Fisher, W. P., Jr. (2011). Metaphor as measurement, and vice versa: Convergence and separation of figure and meaning in a Mawri proverb [Modified version of a paper presented to the African Studies Association, 1996]. Social Science Research Network. http://ssrn.com/abstract=1747967

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012, June 1). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2013). Imagining education tailored to assessment as, for, and of learning: Theory, standards, and quality improvement. Assessment and Learning, 2, 6-22.

Fisher, W. P., Jr. (2014). The central theoretical problem of the social sciences. Rasch Measurement Transactions, 28(2), 1464-1466. http://www.rasch.org/rmt/rmt282.pdf

Fisher, W. P., Jr. (2017, September). Metrology, psychometrics, and new horizons for innovation. 18th International Congress of Metrology, Paris, 09007 [https://cfmetrologie.edpsciences.org/articles/metrology/pdf/2017/01/metrology_metr2017_09007.pdf].

Fisher, W. P., Jr. (2017). A practical approach to modeling complex adaptive flows in psychology and social science. Procedia Computer Science, 114, 165-174. https://doi.org/10.1016/j.procs.2017.09.027

Fisher, W. P., Jr. (2019). How beauty teaches us to understand meaning, in revision.

Fisher, W. P., Jr. (2019). A nondualist social ethic: Fusing subject and object horizons in measurement. TMQ–Techniques, Methodologies, and Quality, in press.

Fisher, W. P., Jr., & Cavanagh, R. (2016). Measurement as a medium for communication and social action, I & II. In Q. Zhang & H. H. Yang (Eds.), Pacific Rim Objective Measurement Symposium (PROMS) 2015 Conference Proceedings (pp. 153-182). Berlin: Springer-Verlag.

Fisher, W. P., Jr., & Oon, E. P.-T. (2019). Information coherence and complexity across contexts: Negotiating discontinuities in educational assessment infrastructures. Information Systems Research, in review.

Fisher, W. P., Jr., Oon, E. P.-T., & Benson, S. (2018). Applying Design Thinking to systemic problems in educational assessment information management. Journal of Physics Conference Series, 1044, 012012 [http://iopscience.iop.org/article/10.1088/1742-6596/1044/1/012012].

Fisher, W. P., Jr., Oon, E. P.-T., & Benson, S. (2019). Rethinking the role of educational assessment in classroom communities: How can design thinking address the problems of coherence and complexity? Measurement, in review.

Fisher, W. P., Jr., & Stenner, A. J. (2011, January 1). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series). http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36

Fisher, W. P., Jr., & Stenner, A. J. (2013). On the potential for improved measurement in the human and social sciences. In Q. Zhang & H. Yang (Eds.), Pacific Rim Objective Measurement Symposium 2012 Conference Proceedings (pp. 1-11). Berlin, Germany: Springer-Verlag.

Fisher, W. P., Jr., & Stenner, A. J. (2016). Theory-based metrological traceability in education: A reading measurement network. Measurement, 92, 489-496.

Fisher, W. P., Jr., & Stenner, A. J. (2018). Ecologizing vs modernizing in measurement and metrology. Journal of Physics Conference Series, 1044, 012025.

Fisher, W. P., Jr., & Stenner, A. J. (2017, September 18). Towards an alignment of engineering and psychometric approaches to uncertainty in measurement: Consequences for the future. 18th International Congress of Metrology, 12004, 1-9. https://doi.org/10.1051/metrology/201712004

Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.

Golinski, J. (2012). Is it time to forget science? Reflections on singular science and its history. Osiris, 27(1), 19-36.

Hutchins, E. (2014). The cultural ecosystem of human cognition. Philosophical Psychology, 27(1), 34-49.

Jasanoff, S. (2005). Designs on nature: Science and democracy in Europe and the United States. Princeton, NJ: Princeton University Press.

Jasanoff, S. (2015). Future imperfect: Science, technology, and the imaginations of modernity. In S. Jasanoff & S.-H. Kim (Eds.), Dreamscapes of modernity: Sociotechnical imaginaries and the fabrication of power (pp. 1-22). Chicago: University of Chicago Press.

Jasanoff, S., & Martello, M. L. (Eds.) (2004). Earthly politics: Local and global in environmental governance. (Politics, Science, and the Environment). Cambridge, MA: MIT Press.

Kjellberg, H., & Helgesson, C.-F. (2006). Multiple versions of markets: Multiplicity and performativity in marketing practice. Industrial Marketing Management, 35, 839-855.

Lampland, M., & Star, S. L. (Eds.). (2008). Standards and their stories: How quantifying, classifying, and formalizing practices shape everyday life. Ithaca, NY: Cornell University Press.

Latour, B. (1990). Postmodern? No, simply amodern: Steps towards an anthropology of science. Studies in History and Philosophy of Science, 21(1), 145-171.

Latour, B. (1991). The impact of science studies on political philosophy. Science, Technology, & Human Values, 16(1), 3-19.

Latour, B. (1993). We have never been modern. Cambridge, Massachusetts: Harvard University Press.

Latour, B. (1998). To modernise or ecologise? That is the question. In B. Braun & N. Castree (Eds.), Remaking reality: Nature at the millennium (pp. 221-242). London: Routledge.

Latour, B. (2005). Reassembling the social: An introduction to Actor-Network-Theory. (Clarendon Lectures in Management Studies). Oxford, England: Oxford University Press.

Latour, B. (2009). On the modern cult of the factish gods (H. MacLean & C. Porter, Trans.). Durham, NC: Duke University Press.

Latour, B. (2010). Tarde’s idea of quantification. In M. Candea (Ed.), The social after Gabriel Tarde: Debates and assessments (pp. 145-162). London: Routledge.

Latour, B. (2011). Love your monsters: Why we must care for our technologies as we do our children. Breakthrough Journal, 2, 21-28. http://thebreakthrough.org/index.php/journal/past-issues/issue-2/love-your-monsters

Latour, B. (2014, February 26). On some of the affects of capitalism. Lecture given at the Royal Academy, Copenhagen, Denmark. Retrieved from http://www.bruno-latour.fr/sites/default/files/136-AFFECTS-OF-K-COPENHAGUE.pdf.

Latour, B., & Callon, M. (2011). “Thou shall not calculate!” or how to symmetricalize gift and capital. Revista De Pensamiento e Investifation Social, 11(1), 171-192.

Latour, B., & Lépinay, V. A. (2010). The science of passionate interests: An introduction to Gabriel Tarde’s economic anthropology. Chicago: Prickly Paradigm Press.

Lenoir, T. (Ed.). (1997). Instituting science: The cultural production of scientific disciplines (T. Lenoir & H. U. Gumbrecht, Eds.). Writing Science. Stanford, CA: Stanford University Press.

Lenoir, T. (1998). Inscribing science: Scientific texts and the materiality of communication. Stanford, California: Stanford University Press.

Li, E. Y., Commons, M. L., Miller, J. G., Robbinet, T. L., Marchand, H., Ost, C. M. et al. (2014, September). Relationship among measures within the social and moral development domain. Behavioral Development Bulletin, 19(3), 106-113.

Nersessian, N. J. (2012). Engineering concepts: The interplay between concept formation and modeling practices in bioengineering sciences. Mind, Culture, and Activity, 19, 222-239.

Nersessian, N. J. (2015). Conceptual innovation on the frontiers of science. In E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in the study of concepts (pp. 455-474). Cambridge, MA: MIT Press.

Nespor, J. (2011). Devices and educational change. Educational Philosophy and Theory, 43(S1).

Overton, W. F. (2015). Processes, relations and Relational-Developmental-Systems. In W. F. Overton & P. C. M. Molenaar (Eds.), Theory and Method. Volume 1 of the Handbook of child psychology and developmental science (7th Ed.) (pp. 9-62). Hoboken, NJ: Wiley.

Schaffer, S. (1992). Late Victorian metrology and its instrumentation: A manufactory of Ohms. In R. Bud & S. E. Cozzens (Eds.), Invisible connections: Instruments, institutions, and science (pp. 23-56). Bellingham, WA: SPIE Optical Engineering Press.

Schaffer, S. (1997). Metrology, metrication, and Victorian values. In B. Lightman (Ed.), Victorian science in context (pp. 438-474). Chicago: University of Chicago Press.

Shapin, S. (1994). A social history of truth: Civility and science in seventeenth-century England. Chicago, Illinois: University of Chicago Press.

Shapin, S., & Schaffer, S. (1985). Leviathan and the air-pump: Hobbes, Boyle, and the experimental life. Princeton, NJ: Princeton University Press.

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Advertisements

Making sustainability impacts universally identifiable, individually owned, efficiently exchanged, and profitable

February 2, 2019

Sustainability impacts plainly and obviously lack common product definitions, objective measures, efficient markets, and associated capacities for competing on improved quality. The absence of these landmarks in the domain of sustainability interests is a result of inattention and cultural biases far more than it is a result of the inherent characteristics or nature of sustainability itself. Given the economic importance of these kinds of capacities and the urgent need for new innovations supporting sustainable development, it is curious how even those most stridently advocating new ways of thinking seem to systematically ignore well-established opportunities for advancing their cause. The wealth of historical examples of rapidly emerging, transformative, disruptive, and highly profitable innovations would seem to motivate massive interest in how extend those successes in new directions.

Economists have long noted how common currencies reduce transaction costs, support property rights, and promote market efficiencies (for references and more information, see previous entries in this blog over the last ten years and more). Language itself is well known for functioning as an economical labor-saving device in the way that useful concepts representing things in the world as words need not be re-invented by everyone for themselves, but can simply be copied. In the same ways that common languages ease communication, and common currencies facilitate trade, so, too, do standards for common product definitions contribute to the creation of markets.

Metrologically traceable measurements make it possible for everyone everywhere to know how much of something in particular there is. This is important, first of all, because things have to be identifiable in shared ways if we are to be able to include them in our lives, socially. Anyone interested in obtaining or producing that kind of thing has to be able to know it and share information about it as something in particular. Common languages capable of communicating specifically what a thing is, and how much of it there is, support claims to ownership and to the fruits of investments in entrepreneurial innovations.

Technologies for precision measurement key to these communications are one of the primary products of science. Instruments measuring in SI units embody common currencies for the exchange of scientific capital. The calibration and distribution of such instruments in the domain of sustainability impact investing and innovation ought to be a top-level priority. How else will sustainable impacts be made universally identifiable, individually owned, efficiently exchanged, and profitable?

The electronics, computer, and telecommunications industries provide ample evidence of precision measurement’s role in reducing transaction costs, establishing common product definitions, and reaping huge profits. The music industry’s use of these technologies combines the science and economics of precision measurement with the artistic creativity of intensive improvisations constructed from instruments tuned to standardized scales that achieve wholly unique levels of individual innovation.

Much stands to be learned, and even more to be gained, in focusing sustainability development on ways in which we can harness the economic power of the profit motive by combining collective efforts with individual imaginations in the domains of human, social, and natural capital. Aligning financial, monetary wealth with the authentic wealth and genuine productivity of gains in human, community, and environmental value ought to be the defining mission of this generation. The time to act is now.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Why economic growth can and inevitably will be green

October 1, 2018

So, approaching matters once again from yet another point of view, we have Jason Hickel explaining a couple of weeks ago “Why Growth Can’t Be Green.” This article provides yet another example of how the problem is the problem. That is, the way we define problems sets up particular kinds of solutions in advance, and sometimes, as Einstein famously pointed out, problems cannot be solved from within the same conceptual framework that gave rise to them. I’ve expanded on this theme in a number of previous posts, for instance, here.

Hickel takes up the apparent impossibility of aligning economic growth with environmental values. He speaks directly to what he calls the rebound effect, the way that “improvements in resource efficiency drive down prices and cause demand to rise—thus canceling out some of the gains.” But that rebound can happen only as long as the economy remains defined and limited by the alignment of manufactured capital and finance, ignoring the largely unexamined and unconsidered possibility that human, social, and natural capital could be measured well enough to be also aligned with finance.

Hence, as I say, the problem is the problem. Broadening one’s conceptualization of the problem opens up new opportunities that otherwise never come into view.

The Hickel article’s entire focus is then on top-down policy impositions like taxes or a Genuine Progress Index. These presume human, social, and natural capital can only ever exist in dead formations that have to be micromanaged and concretely manipulated, and that efficient markets bringing them to life are inherently and literally unthinkable. (See a short article here for an explanation of the difference between dead and living capital. There’s a lot more where that came from, as is apparent in the previous posts here in this blog.)

The situation could be vastly different than what Hickel imagines. If we could own, buy, and sell products in efficient markets we could reward the production of human, social, and environmental value. In that scenario, when improvements in environmental resource efficiency are obtained, demand for that new environmental value will rise and its price will go down, not the resource’s price.

We ought to be creative enough to figure out how to configure markets so that prices for environmental resources (oil, farmland, metals, etc.) can stay constant or fall without increasing demand for them, as could happen if that demand is counterbalanced and absorbed by rising human, social, and environmental quality capital values.

The question is how to absorb the rebound effect in other forms of capital that grow in demand while holding demand for the natural resource base in check. The vital conceptual distinction is between socialistic centralized planning and control of actual physical entities (people, communities, the environment, and manufactured items), on the one hand, and capitalistic decentralized distributed network effects on abstract transferable representations, on the other. Everyone defaults to the socialist scenario without ever considering there might be a whole other arena in which fruitful possibilities might be imagined.

What if, for instance, we could harness the profit motive to promote growth in genuine human, social, and environmental value? What if we were able to achieve qualitatively meaningful increases in authentic wealth that were economically contingent on reduced natural resource consumption? What if the financial and substantive value profits that could be had meant that resource consumption could be reduced by the same kinds of factors as have been realized in the context of Moore’s Law? What if a human economics of genuine value could actually result in humanity being able to adjust the global thermostat up or down in small increments by efficiently rewarding just the right combinations of policies and practices at the right times and places in the right volumes?

The only way that could ever happen is if people are motivated to do the right thing for the earth and for humanity because it is the right thing for them and their families. They have to be able to own their personal shares of their personal stocks of human, social, and natural capital. They have to be able to profit from investments in their own and others’ shares. They will not act on behalf of the earth and humanity only because it is the right thing to do. There has to be evidence and explanations of how everyone is fairly held accountable to the same standards, and has the same opportunities for profit and loss as anyone else. Then, and only then, it seems, will human, social, and environmental value become communicable in a viral contagion of good will.

Socialism has been conclusively proven unworkable, for people, communities, and the environment, as well as financially. But a human, social, and natural capitalism has hardly even been articulated, much less tried out. How do we make human, social, and natural capital fungible? How might the economy transcend its traditional boundaries and expand itself beyond the existing alignment of manufactured capital and finance?

It’s an incredibly complex proposal, but also seems like such a simple thing. The manufactured capital economy uses the common language of good measurement to improve quality, to simplify management communications, and to lower transaction costs in efficient markets. So what should we do if we want to correct the imbalanced negative impacts on people, communities, and the environment created by the misplaced emphasis on aligning only manufactured capital and financial capital?

As has been repeatedly proposed for years in this blog, maybe we should use the manufactured capital markets as a model and use good measurement to improve the quality of human, social, and environmental capital, to simplify communications and management, to lower transaction costs, and to align the genuine human, social, and environmental value created with financial value in efficient markets.

Of course, grasping that as viable, feasible, and desirable requires understanding that substantively meaningful precision measurement is something quite different from what usually passes for quantification. And that is an entirely different story, though one taken up repeatedly in previous entries in this blog, of course….

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

 

Economy of language, Eros, meaning, the public, and its problems

July 11, 2017

The medium is the message. The more transparent the medium is, the more seductive the messages expressed in it. The seductiveness of numbers stems from their roots in the mathematical quality of all thinking: the way that signs are used as the media of concept-thing relations. Our captivation with numbers is entirely embedded in the allure of language, which stems in large part from its economy: knowing how to read, write, speak, and listen saves us the trouble of re-inventing words and concepts for ourselves, and of having to translate each other’s private languages. The problem is, of course, that having words for things and sharing them by no means assures understanding. But when it works, it really works, as the history of science shows.

Seductive enthrallment with meaning and beauty defines the parameters of the difference between the modern Cartesian dualist world view and the emerging unmodern nondualist world view. This is the whole point of taking up Heidegger’s sense of method as meta-odos. As Plato saw, Socrates’ recounting of the myth of Eros told to him by Diotima conveys how captivation with beauty embodies the opposites of wealth and poverty in a simultaneous possession and absence, neither of which is ever complete.

The evolutionary/developmental paradigm shift taking place will transform everything by institutionalizing in every area of life an order of magnitude increase in the complexity of relationships, and a corresponding increase in the simplicity with which those relationships can be managed. The compelling absorption into the flow of meaning that necessarily informs discourse but currently functions as an unacknowledged assumption informing operations will itself be brought into view and will become an object of operations.

As Dewey understood, public consciousness of an issue or set of issues, and the will to take them on, emerges when existing institutions fail. We are certainly living in a time in which our political, economic, social, educational, medical, legal, environmental, etc. institutions have been failing to live up to their responsibilities for quite a number of years. The efforts of the public to address these failures have been obstructed by the lack of the media needed for integrating the complex, multilevel, and discontinuous opposites of harmony and dissonance, agreement and dissent, that structure a binding, coherent culture.

Science is nothing but an extension of everyday reasoning. Instead of imitating the natural sciences, the social sciences need to focus on how science extends the complex cognitive ecologies of language. As we figure that out and get these metasystems in place, we will simultaneously create the media the public needs to find its voice and organize itself to meet the challenges of how to build new institutions capable of successfully countering human suffering, social discontent, and environmental degradation.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Another Take on the Emerging Paradigm Shift

November 8, 2014

Over the course of human history, people have usually been able to rely on some stable source of authority and control in their lives, be it religion, the king or queen, or the social order itself. However benevolent or malevolent a regime might be, usually there have been clear lines along which blame or credit can be assigned.

So, even though the complexity and scale of success and failure in today’s world provide ample evidence that no one exerts centralized control over events, it is not surprising that many people today still find it comforting to think some individuals or groups must be manipulating others to their own ends. There is, however, an alternative point of view that may provide a more productive path toward effective action.

After all, efforts to date that have focused on the removal and replacement of any given group that appears to be in control have simply resulted in an alteration of the system, and not the institution of a fundamentally new system. Thus, socialist and communist governments have failed in large part because they were unable to manage resources as effectively as capitalist systems do (which is, of course, not all that well). That is, despite the appearance of having put in place a radically different system of priorities, the constraints of socioeconomics themselves did not change in the context of socialist and communist regimes.

The individual incumbents of social and economic positions have nothing whatsoever to do with the creation of the socioeconomic system’s likelihoods of success and failure, and if they had not accepted their roles in that system, others would have. Changing the system is much more difficult, both conceptually and practically, than merely assigning blame and replacing an individual or group with another individual or group. To the extent the system remains the same, changing the occupants within it makes little difference.

The idea is much the same as was realized in industry when it shifted from quality control’s “tail-chopping” methods to continuous quality improvement’s “curve-shifting” methods. In the former, a certain ratio of acceptable to malformed parts is dictated by the system’s materials and processes. Quality control simply removes the bad parts from the production line and does nothing to change the system. Since quality is often normally distributed, taking the statistical shape of a bell curve, it is accordingly inevitable that cutting off the bad end of that distribution (tail-chopping) only results in it being filled in again in the next production cycle.

Continuous quality improvement methods, in contrast, focus on changing the system and on reducing the likelihood of producing bad parts. Efforts of these kind move the entire quality distribution up the scale so that no parts fall in the previous distribution’s bad tail at all. Of course, the outcomes of our socioeconomic system’s processes are very different from the manufacturing of machine parts. The point of this simple illustration is only that there is remarkable value in thinking less about removing undesired individuals from a process and in thinking more about changing the process itself.

There is no denying that those who seem to be in control benefit disproportionately from others’ efforts. But even though they have had little or nothing to do with creating the system that confers these benefits on them, they certainly do have a vested interest in maintaining that system. This fact reveals another important aspect of any solution that will prove truly viable: the new system must provide benefits not available under the old one. The shift from old to new cannot be a matter of mere will power or organizational efficiency. It must come about as a result of the attractions offered by the new system, which motivate behavior changes universally with little or no persuasion. Qualitatively different classes of opportunities and rewards can come about only by integrating into the system features of the environment that were excluded from the previous system. The central problem of life today is how to provoke this kind of shift and its new integrations.

We can begin to frame this problem in its proper context when we situate it horizontally as an ecological problem and vertically as an evolutionary one. In the same way that ecological niches define the evolutionary opportunities available to species of plants and animals, historical and cultural factors set up varying circumstances to which human societies must adapt. Biological and social adaptations both become increasingly complex over time, systematically exhibiting characteristic patterns in the ways matter, energy, and information are functionally integrated.

The present form of contemporary global society has evolved largely in terms of the Western European principles of modern science, capitalism, and democracy. These principles hinge on the distinction between a concrete, solid, and objective world and an impressionistic, intuitive, and subjective mind. For instance, science and economics focus traditionally on measuring and managing material things and processes, like volts, meters, kilograms, barrels, degrees Celsius, liters, speed, flows, etc. Human, social, and environmental issues are treated statistically, not in terms of standardized metric units, and they are economically regarded as “externalities” excluded from profit and loss calculations.

So, if qualitatively different classes of opportunities and rewards can come about only by integrating into the system features of the environment that were excluded from the previous system, what can we do to integrate the subjective with the objective, and to also then incorporate standardized metric units for the externalities of human, social, and environmental capital into science and economics? The question demands recognition of a) a new system of ecological niches with their own unique configurations of horizontal relationships, and b) the evolution of new species capable of adapting to life in these niches.

The problem is compounded by the complexity of seeing the new system of niches as emerging from the existing system of ecological relationships. Economically speaking, today’s cost centers will be tomorrow’s profit drivers. Scientifically speaking, sources of new repeatable and stable phenomena will have to be identified in what are today assumed to be unrepeatable and unstable phenomena, and will then have to be embodied in instrumental ensembles.

The immediate assumption, which we will have to strive to overcome, is that any such possibilities for new economic and scientific opportunities could hardly be present in the world today and not be widely known and understood. A culturally ingrained presupposition we all share to some extent is that objective facts are immediately accessible and become universally adopted for their advantages as soon as they are recognized. Claims to the contrary can safely be ignored, even if, or perhaps especially if, they represent a truly original potential for system change.

This assumption is an instance of what behavioral economists like Simon and Kahnemann refer to as bounded rationality, which is the idea that language and culture prethink things for us in ways we are usually unaware of. Research has shown that many decisions in daily life are tinged with emotion, such that a certain kind of irrationality takes an irrefutable place in how we think. Examples include choices involving various combinations of favorable and unfavorable odds of profiting from some exchange. Small but sure profits are often ignored in favor of larger and less sure profits, or mistaken calculations are assumed correct, to the disadvantage of the decision maker. There is surely method in the madness, but the pure rationality of an ideal thought process can no longer be accommodated.

Given the phenomenon of bounded rationality, and the complexity of the metasystematic shift that’s needed, how is change to be effected? As Einstein put it, problems of a certain kind cannot be solved from within the same framework that gave rise to them. As long as we continue to think in terms of marshalling resources to apply to the solution of a problem we have failed in conceiving the proper magnitude and scope of the problem we face.

We must instead think in terms of problem-solution units that themselves embody a new evolutionary species functioning within a new system of ecological niches. And these species-niche combinations must be born fully functional and viable, like birds from lizard eggs, caught up in the flow and play of their matter, energy and information streams from the moment of their arrival.

A vitally important aspect of this evolutionary leap is that the new system emerge of its own accord, seemingly with a will of its own. But it will not take shape as a result of individuals or groups deliberately executing a comprehensive design. There will be no grand master architect, though the co-incidence of multiple coordinations and alignments will seem so well planned that many may assume one exists.

It may be, however, that a new spontaneously self-organizing culture might be grown from a few well-placed spores or seeds. The seeds themselves need to be viable in terms of their growth potential and the characteristics of the particular species involved. But equally important are the characteristics of the environment in which the seeds are planted. Bernstein (2004) describes four conditions necessary to the birth of plenty in the modern world:

  1. Property rights: those who might create new forms of value need to own the fruits of their labors.
  2. Scientific rationalism: innovation requires a particular set of conceptual tools and a moral environment in which change agents need not fear retribution.
  3. Capital markets: investors must be able to identify entrepreneurs and provide them with the funds they need to pursue their visions.
  4. Transportation/communications: new products and the information needed to produce and market them must have efficient channels in which to move.

If we take the new emerging culture as unmodern, nonmodern, or amodern, might a new paradigm of plenty similarly take shape as these four conditions are applied not just to manufactured capital, land, and labor, but to human capital (abilities, health, performance), social capital (trust, honesty, dependability, etc.), and natural capital (the environmental services of watersheds, fisheries, estuaries, forests, etc.)? Should not we own legal title to defined shares of each form of capital? Should not science be systematically employed in research on each form of capital? Should not investments in each form of capital be accountable? Should not each form of capital be mobile and fungible within established networks? Should not there be common languages serving as common currencies for the exchange of each form of capital? Instead of assuming the answers to these questions are uniformly “No,” should not we at least entertain them long enough to firmly establish why they cannot be “Yes”?

Professional capital as product of human, social, and decisional capitals

April 18, 2014

Leslie Pendrill gave me a tip on a very interesting book, Professional Capital, by Michael Fullan. The author’s distinction between business capital and professional capital is somewhat akin to my distinction (Fisher, 2011) between dead and living capital. The primary point of contact between Fullan’s sense of capital and mine stems from his inclusion of social and decisional capital as crucial enhancements of human capital.

Of course, defining human capital as talent, as Fullan does, is not going to go very far toward supporting generalized management of it. Efficient markets require that capital be represented in transparent and universally available instruments (common currencies or metrics). Transparent, systematic representation makes it possible to act on capital abstractly, in laboratories, courts, and banks, without having to do anything at all with the physical resource itself. (Contrast this with socialism’s focus on controlling the actual concrete resources, and the resulting empty store shelves, unfulfilled five-year plans, pogroms and purges, and overall failure.) Universally accessible transparent representations make capital additive (amounts can be accrued), divisible (it can be divided into shares), and mobile (it can be moved around in networks accepting the currency/metric). (See references below for more information.)

Fullan cites research by Carrie Leanna at the U of Pittsburgh showing that teachers with high social capital increased their students math scores by 5.7% more than teachers with low social capital. The teachers with the highest skill levels (most human capital) and high social capital did the overall best. Low-ability teachers in schools with high social capital did as well as average teachers.

This is great, but the real cream of Fullan’s argument concerns the importance of what he calls decisional capital. I don’t think this will likely work out to be entirely separate from human capital, but his point is well taken: the capacity to consistently engage with students with competence, good judgment, insight, inspiration, creative improvisation, and openness to feedback in a context of shared responsibility is vital. All of this is quite consistent with recent work on collective intelligence (Fischer, Giaccardi, Eden, et al., 2005; Hutchins, 2010; Magnus, 2007; Nersessian, 2006; Woolley, Chabris, Pentland, et al., 2010; Woolley and Fuchs, 2011).

And, of course, you can see this coming: decisional capital is precisely what better measurement provides. Integrated formative and summative assessment informs decision making at the individual level in ways that are otherwise impossible. When those assessments are expressed in uniformly interpretable and applicable units of measurement, collective intelligence and social capital are boosted in the ways documented by Leanna as enhancing teacher performance and boosting student outcomes.

Anyway, just wanted to share that. It fits right in with the trading zone concept I presented at IOMW (the slides are available on my LinkedIn page).

Fischer, G., Giaccardi, E., Eden, H., Sugimoto, M., & Ye, Y. (2005). Beyond binary choices: Integrating individual and social creativity. International Journal of Human-Computer Studies, 63, 482-512.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2003). Measurement and communities of inquiry. Rasch Measurement Transactions, 17(3), 936-938 [http://www.rasch.org/rmt/rmt173.pdf].

Fisher, W. P., Jr. (2004a, Thursday, January 22). Bringing capital to life via measurement: A contribution to the new economics. In R. Smith (Chair), Session 3.3B. Rasch Models in Economics and Marketing. Second International Conference on Measurement. Perth, Western Australia:  Murdoch University.

Fisher, W. P., Jr. (2004b, Friday, July 2). Relational networks and trust in the measurement of social capital. Twelfth International Objective Measurement Workshops. Cairns, Queensland, Australia: James Cook University.

Fisher, W. P., Jr. (2005a). Daredevil barnstorming to the tipping point: New aspirations for the human sciences. Journal of Applied Measurement, 6(3), 173-179.

Fisher, W. P., Jr. (2005b, August 1-3). Data standards for living human, social, and natural capital. In Session G: Concluding Discussion, Future Plans, Policy, etc. Conference on Entrepreneurship and Human Rights. Pope Auditorium, Lowenstein Bldg, Fordham University.

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2008a, 3-5 September). New metrological horizons: Invariant reference standards for instruments measuring human, social, and natural capital. 12th IMEKO TC1-TC7 Joint Symposium on Man, Science, and Measurement. Annecy, France: University of Savoie.

Fisher, W. P., Jr. (2008b, March 28). Rasch, Frisch, two Fishers and the prehistory of the Separability Theorem. In J. William P. Fisher (Ed.), Session 67.056. Reading Rasch Closely: The History and Future of Measurement. American Educational Research Association. New York City [Paper available at SSRN: http://ssrn.com/abstract=1698919%5D: Rasch Measurement SIG.

Fisher, W. P., Jr. (2009a, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009b). NIST Critical national need idea White Paper: Metrological infrastructure for human, social, and natural capital (http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology (11 pages).

Fisher, W. P., Jr. (2010a, 22 November). Meaningfulness, measurement, value seeking, and the corporate objective function: An introduction to new possibilities. Sausalito, California: LivingCapitalMetrics.com (http://ssrn.com/abstract=1713467).

Fisher, W. P. J. (2010b). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital (p. http://ssrn.com/abstract=2340674). Bridge to Business Postdoctoral Certification, Freeman School of Business: Tulane University.

Fisher, W. P., Jr. (2010c). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics: Conference Series, 238(1), http://iopscience.iop.org/1742-6596/238/1/012016/pdf/1742-6596_238_1_012016.pdf.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2011b). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com [Online]. Available: http://ssrn.com/abstract=1739386 (Accessed 18 January 2011).

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr., & Stenner, A. J. (2005, Tuesday, April 12). Creating a common market for the liberation of literacy capital. In R. E. Schumacker (Ed.), Rasch Measurement: Philosophical, Biological and Attitudinal Impacts. American Educational Research Association. Montreal, Canada: Rasch Measurement SIG.

Fisher, W. P., Jr., & Stenner, A. J. (2011a, January). Metrology for the social, behavioral, and economic sciences. Available: http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36 (Accessed 12 January 2014).

Fisher, W. P., Jr., & Stenner, A. J. (2011b, August 31 to September 2). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium. Jena, Germany: http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf.

Hutchins, E. (2010). Cognitive ecology. Topics in Cognitive Science, 2, 705-715.

Magnus, P. D. (2007). Distributed cognition and the task of science. Social Studies of Science, 37(2), 297-310.

Nersessian, N. J. (2006, December). Model-based reasoning in distributed cognitive systems. Philosophy of Science, pp. 699-709.

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010, 29 October). Evidence for a collective intelligence factor in the performance of human groups. Science, pp. 686-688.

Woolley, A. W., & Fuchs, E. (2011, September-October). Collective intelligence in the organization of science. Organization Science, pp. 1359-1367.

Revisiting the “Glocal” integration of universals and historical context

April 11, 2014

Integrated considerations of the universal and the local, the pure ideal parameters and the messy concrete observations, seem ever more ubiquitous in my reading lately. For instance, Ricoeur (1992, p. 289) takes up the problem of human rights imperfectly realized as a product of Western Europe’s cultural history that has nonetheless been adopted by nearly every country in the world. Ricoeur raises the notion of “universals in context or of potential or inchoate universals” that embody the paradox in which

“on the one hand, one must maintain the universal claim attached to a few values where the universal and the historical intersect, and on the other hand, one must submit this claim to discussion, not on a formal level, but on the level of the convictions incorporated in concrete forms of life.”

I could hardly come up with a better description of Rasch measurement theory and practice myself. Any given Rasch model data analysis provides many times more individual-level qualitative statistics on the concrete, substantive observations than on the global quantitative measures. The whole point of graphical displays of measurement information in kidmaps (Chien, Wang, Wang, & Lin, 2009; Masters, 1994), Wright maps (Wilson, 2011), construct maps and self-scoring forms (Best, 2008; Linacre, 1997), etc. is precisely to integrate concrete events as they happened with the abstract ideal of a shared measurement dimension.

It is such a shame that there are so few people thinking about these issues aware of the practical value of the state of the art in measurement, and who include all of the various implications of multifaceted, multilevel, and multi-uni-dimensional modeling, fit assessment, equating, construct mapping, standard setting, etc. in their critiques.

The problem falls squarely in the domain of recent work on the coproduction of social, scientific, and economic orders (such as Hutchins 2010, 2012; Nersessian, 2012). Systems of standards, from languages to metric units to dollars, prethink the world for us and simplify a lot of complex work. But then we’re stuck at the level of conceptual, social, economic, and scientific complexity implied by those standards, unless we can create new forms of social organization integrating more domains. Those who don’t know anything about the available tools can’t get any analytic traction, those who know about the tools but don’t connect with the practitioners can’t get any applied traction (see Wilson’s Psychometric Society Presidential Address on this; Wilson, 2013), analysts and practitioners who form alliances but fail to include accountants or administrators may lack financial or organizational traction, etc. etc.

There’s a real need to focus on the formation of alliances across domains of practice, building out the implications of Callon’s (1995, p. 58) observation that “”translation networks weave a socionature.” In other words, standards are translated into the languages of different levels and kinds of practice to the extent that people become so thoroughly habituated to them that they succumb to the illusion that the objects of interest are inherently natural in self-evident ways. (My 2014 IOMW talk took this up, though there wasn’t a lot of time for details.)

Those who are studying these networks have come to important insights that set the stage for better measurement and metrology for human, social, and natural capital. For instance, in a study of universalities in medicine, Berg and Timmermans (2000, pp. 55, 56) note:

“In order for a statistical logistics to enhance precise decision making, it has to incorporate imprecision; in order to be universal, it has to carefully select its locales. The parasite cannot be killed off slowly by gradually increasing the scope of the Order. Rather, an Order can thrive only when it nourishes its parasite—so that it can be nourished by it.”

“Paradoxically, then, the increased stability and reach of this network was not due to more (precise) instructions: the protocol’s logistics could thrive only by parasitically drawing upon its own disorder.”

Though Berg and Timmermans show no awareness at all of probabilistic and additive conjoint measurement theory and practice, their description of how a statistical logistics has to work to enhance precise decision making is right on target. This phenomenon of noise-induced order is a kind of social stochastic resonance (Fisher, 1992, 2011b) that provides another direction in which explanations of Rasch measurement’s potential role in establishing new metrological standards (Fisher, 2009, 2011a) have to be taken.

Berg, M., & Timmermans, S. (2000). Order and their others: On the constitution of universalities in medical work. Configurations, 8(1), 31-61.

Best, W. R. (2008). A construct map that Ben Wright would relish. Rasch Measurement Transactions, 22(3), 1169-70 [http://www.rasch.org/rmt/rmt223a.htm].

Callon, M. (1995). Four models for the dynamics of science. In S. Jasanoff, G. E. Markle, J. C. Petersen & T. Pinch (Eds.), Handbook of science and technology studies (pp. 29-63). Thousand Oaks, California: Sage Publications.

Chien, T.-W., Wang, W.-C., Wang, H.-Y., & Lin, H.-J. (2009). Online assessment of patients’ views on hospital performances using Rasch model’s KIDMAP diagram. BMC Health Services Research, 9, 135 [10.1186/1472-6963-9-135 or http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727503/%5D.

Fisher, W. P., Jr. (1992, Spring). Stochastic resonance and Rasch measurement. Rasch Measurement Transactions, 5(4), 186-187 [http://www.rasch.org/rmt/rmt54k.htm].

Fisher, W. P., Jr. (2009, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2011b). Stochastic and historical resonances of the unit in physics and psychometrics. Measurement: Interdisciplinary Research & Perspectives, 9, 46-50.

Hutchins, E. (2010). Cognitive ecology. Topics in Cognitive Science, 2, 705-715.

Hutchins, E. (2012). Concepts in practice as sources of order. Mind, Culture, and Activity, 19, 314-323.

Linacre, J. M. (1997). Instantaneous measurement and diagnosis. Physical Medicine and Rehabilitation State of the Art Reviews, 11(2), 315-324 [http://www.rasch.org/memo60.htm].

Masters, G. N. (1994). KIDMAP – a history. Rasch Measurement Transactions, 8(2), 366 [http://www.rasch.org/rmt/rmt82k.htm].

Nersessian, N. J. (2012). Engineering concepts: The interplay between concept formation and modeling practices in bioengineering sciences. Mind, Culture, and Activity, 19, 222-239.

Wilson, M. R. (2011). Some notes on the term: “Wright Map.” Rasch Measurement Transactions, 25(3), 1331 [http://www.rasch.org/rmt/rmt253.pdf].

Wilson, M. (2013, April). Seeking a balance between the statistical and scientific elements in psychometrics. Psychometrika, 78(2), 211-236.

Convergence, Divergence, and the Continuum of Field-Organizing Activities

March 29, 2014

So what are the possibilities for growing out green shoots from the seeds and roots of an ethical orientation to keeping the dialogue going? What kinds of fruits might be expected from cultivating a common ground for choosing discourse over violence? What are the consequences for practice of planting this seed in this ground?

The same participant in the conversation earlier this week at Convergence XV who spoke of the peace building processes taking place around the world also described a developmental context for these issues of mutual understanding. The work of Theo Dawson and her colleagues (Dawson, 2002a, 2002b, 2004; Dawson, Fischer, and Stein, 2006) is especially pertinent here. Their comparisons of multiple approaches to cognitive and moral development have provided clear and decisive theory, evidence, and instrumentation concerning the conceptual integrations that take place in the evolution of hierarchical complexity.

Conceptual integrations occur when previously tacit, unexamined, and assumed principles informing a sphere of operations are brought into conscious awareness and are transformed into explicit objects of new operations. Developmentally, this is the process of discovery that takes place from the earliest stages of life, in utero. Organisms of all kinds mature in a process of interaction with their environments. Young children at the “terrible two” stage, for instance, are realizing that anything they can detach from, whether by throwing or by denying (“No!”), is not part of them. Only a few months earlier, the same children will have been fascinated with their fingers and toes, realizing these are parts of their own bodies, often by putting them in their mouths.

There are as many opportunities for conceptual integrations between the ages of 21 to 99 as there are between birth and 21. Developmental differences in perspectives can make for riotously comic situations, and can also lead to conflicts, even when the participants agree on more than they disagree on. And so here we arrive at a position from which we can get a grip on how to integrate convergence and divergence in a common framework that follows from the prior post’s brief description of the ontological method’s three moments of reduction, application, and deconstruction.

Image

Woolley and colleagues (Woolley, et al., 2010; Woolley and Fuchs, 2011) describe a continuum of five field-organizing activities categorizing the types of information needed for effective collective intelligence (Figure 1). Four of these five activities (defining, bounding, opening, and bridging) vary in the convergent versus divergent processes they bring to bear in collective thinking. Defining and bounding are convergent processes that inform judgment and decision making. These activities are especially important in the emergence of a new field or organization, when the object of interest and the methods of recognizing and producing it are in contention. Opening and bridging activities, in contrast, diverge from accepted definitions and transgress boundaries in the creative process of pushing into new areas. Undergirding the continuum as a whole is the fifth activity, grounding, which serves as a theory- and evidence-informed connection to meaningful and useful results.

There are instances in which defining and bounding activities have progressed to the point that the explanatory power of theory enables the calibration of test items from knowledge of the component parts included in those items. The efficiencies and cost reductions gained from computer-based item generation and administration are significant. Research in this area takes a variety of approaches; for more information, see Daniel and Embretson (2010), DeBoeck and Wilson (2004), Stenner, et al. (2013), and others.

The value of clear definitions and boundaries in this context stems in large part from the capacity to identify exceptions that prove (test) the rules, and that then also provide opportunities for opening and bridging. Kuhn (1961, p. 180; 1977, p. 205) noted that

To the extent that measurement and quantitative technique play an especially significant role in scientific discovery, they do so precisely because, by displaying significant anomaly, they tell scientists when and where to look for a new qualitative phenomenon.

Rasch (1960, p. 124) similarly understood that “Once a law has been established within a certain field then the law itself may serve as a tool for deciding whether or not added stimuli and/or objects belong to the original group.” Rasch gives the example of mechanical force applied to various masses with resulting accelerations, introducing idea that one of the instruments might exert magnetic as well as mechanical force, with noticeable effects on steel masses, but not on wooden masses. Rasch suggests that exploration of these anomalies may result in the discovery of other similar instruments that vary in the extent to which they also exert the new force, with the possible consequence of discovering a law of magnetic attraction.

There has been an intense interest in the assessment of divergent inconsistencies in measurement research and practice following in the wake of Rasch’s early work in psychological and social measurement (examples from a very large literature in this area include Karabatsos and Ulrich, 2002, and Smith and Plackner, 2009). Andrich, for instance, makes explicit reference to Kuhn (1961), saying, “…the function of a model for measurement…is to disclose anomalies, not merely to describe data” (Andrich, 2002, p. 352; also see Andrich, 1996, 2004, 2011). Typical software for applying Rasch models (Andrich, et al., 2013; Linacre, 2011, 2013; Wu, et al., 2007) thus accordingly provides many more qualitative numbers evaluating potential anomalies than quantitative measuring numbers. These qualitative numbers (digits that do not stand for something substantive that adds up in a constant unit) include uncertainty and confidence indicators that vary with sample size; mean square and standardized model fit statistics; and principal components analysis factor loadings and eigenvalues.

The opportunities for divergent openings onto new qualitative phenomena provided by data consistency evaluations are complemented in Rasch measurement by a variety of bridging activities. Different instruments intended to measure the same or closely related constructs may often be equated or co-calibrated, so they measure in a common unit (among many publications in this area, see Dawson, 2002a, 2004; Fisher, 1997; Fisher, et al., 1995; Massof and Ahmadian, 2007; Smith and Taylor, 2004). Similarly, the same instrument calibrated on different samples from the same population may exhibit consistent properties across those samples, offering further evidence of a potential for defining a common unit (Fisher, 1999).

Other opening and bridging activities include capacities (a) to drop items or questions from a test or survey, or to add them; (b) to adaptively administer subsets of custom-selected items from a large bank; and (c) to adjust measures for the leniency or severity of judges assigning ratings, all of which can be done, within the limits of the relevant definitions and boundaries, without compromising the unit of comparison. For methodological overviews, see Bond and Fox (2007), Wilson (2005), and others.

The various field-organizing activities spanning the range from convergence to divergence are implicated not only in research on collective thinking, but also in the history and philosophy of science. Galison and colleagues (Galison, 1997, 1999; Galison and Stump, 1996) closely examine positivist and antipositivist perspectives on the unity of science, finding their conclusions inconsistent with the evidence of history. A postpositivist perspective (Galison, 1999, p. 138), in contrast, finds “distinct communities and incommensurable beliefs” between and often within the areas of theory, experiment, and instrument-making. But instead of finding these communities “utterly condemned to passing one another without any possibility of significant interaction,” Galison (1999, p. 138) observes that “two groups can agree on rules of exchange even if they ascribe utterly different significance to the objects being exchanged; they may even disagree on the meaning of the exchange process itself.” In practice, “trading partners can hammer out a local coordination despite vast global differences.”

In accord with Woolley and colleagues’ work on convergent and divergent field-organizing activities, Galison (1999, p. 137) concludes, then, that “science is disunified, and—against our first intuitions—it is precisely the disunification of science that underpins its strength and stability.” Galison (1997, pp. 843-844) concludes with a section entitled “Cables, Bricks, and Metaphysics” in which the postpositivist disunity of science is seen to provide its unexpected coherence from the simultaneously convergent and divergent ways theories, experiments, and instruments interact.

But as Galison recognizes, a metaphor based on the intertwined strands in a cable is too mechanical to support the dynamic processes by which order arises from particular kinds of noise and chaos. Not cited by Galison is a burgeoning literature on the phenomenon of noise-induced order termed stochastic resonance (Andò  and Graziani 2000, Benzi, et al., 1981; Dykman and McClintock, 1998; Fisher, 1992, 2011; Hess and Albano, 1998; Repperger and Farris, 2010). Where the metaphor of a cable’s strands breaks down, stochastic resonance provides multiple ways of illustrating how the disorder of finite and partially independent processes can give rise to an otherwise inaccessible order and structure.

Stochastic resonance involves small noisy signals that can be amplified to have very large effects. The noise has to be of a particular kind, and too much of it will drown out rather than amplify the effect. Examples include the interaction of neuronal ensembles in the brain (Chialvo, Lontin, and Müller-Gerking, 1996), speech recognition (Moskowitz and Dickinson, 2002), and perceptual interpretation (Rianni and Simonotto, 1994). Given that Rasch’s models for measurement are stochastic versions of Guttman’s deterministic models (Andrich, 1985), the question has been raised as to how Rasch’s seemingly weaker assumptions could lead to a measurement model that is stronger than Guttman’s (Duncan, 1984, p. 220). Stochastic resonance may provide an essential clue to this puzzle (Fisher, 1992, 2011).

Another description of what might be a manifestation of stochastic resonance akin to that brought up by Galison arises in Berg and Timmermans’ (2000, p. 56) study of the constitution of universalities in a medical network. They note that, “Paradoxically, then, the increased stability and reach of this network was not due to more (precise) instructions: the protocol’s logistics could thrive only by parasitically drawing upon its own disorder.” Much the same has been said about the behaviors of markets (Mandelbrot, 2004), bringing us back to the topic of the day at Convergence XV earlier this week. I’ll have more to say on this issue of universalities constituted via noise-induced order in due course.

References

Andò, B., & Graziani, S. (2000). Stochastic resonance theory and applications. New York: Kluwer Academic Publishers.

Andrich, D. (1985). An elaboration of Guttman scaling with Rasch models for measurement. In N. B. Tuma (Ed.), Sociological methodology 1985 (pp. 33-80). San Francisco, California: Jossey-Bass.

Andrich, D. (1996). Measurement criteria for choosing among models with graded responses. In A. von Eye & C. Clogg (Eds.), Categorical variables in developmental research: Methods of analysis (pp. 3-35). New York: Academic Press, Inc.

Andrich, D. (2002). Understanding resistance to the data-model relationship in Rasch’s paradigm: A reflection for the next generation. Journal of Applied Measurement, 3(3), 325-359.

Andrich, D. (2004, January). Controversy and the Rasch model: A characteristic of incompatible paradigms? Medical Care, 42(1), I-7–I-16.

Andrich, D. (2011). Rating scales and Rasch measurement. Expert Reviews in Pharmacoeconomics Outcome Research, 11(5), 571-585.

Andrich, D., Lyne, A., Sheridan, B., & Luo, G. (2013). RUMM 2030: Rasch unidimensional models for measurement. Perth, Australia: RUMM Laboratory Pty Ltd [www.rummlab.com.au].

Benzi, R., Sutera, A., & Vulpiani, A. (1981). The mechanism of stochastic resonance. Journal of Physics. A. Mathematical and General, 14, L453-L457.

Berg, M., & Timmermans, S. (2000). Order and their others: On the constitution of universalities in medical work. Configurations, 8(1), 31-61.

Bond, T., & Fox, C. (2007). Applying the Rasch model: Fundamental measurement in the human sciences, 2d edition. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Chialvo, D., Longtin, A., & Müller-Gerking, J. (1996). Stochastic resonance in models of neuronal ensembles revisited [Electronic version].

Daniel, R. C., & Embretson, S. E. (2010). Designing cognitive complexity in mathematical problem-solving items. Applied Psychological Measurement, 34(5), 348-364.

Dawson, T. L. (2002a, Summer). A comparison of three developmental stage scoring systems. Journal of Applied Measurement, 3(2), 146-89.

Dawson, T. L. (2002b, March). New tools, new insights: Kohlberg’s moral reasoning stages revisited. International Journal of Behavioral Development, 26(2), 154-66.

Dawson, T. L. (2004, April). Assessing intellectual development: Three approaches, one sequence. Journal of Adult Development, 11(2), 71-85.

Dawson, T. L., Fischer, K. W., & Stein, Z. (2006). Reconsidering qualitative and quantitative research approaches: A cognitive developmental perspective. New Ideas in Psychology, 24, 229-239.

De Boeck, P., & Wilson, M. (Eds.). (2004). Explanatory item response models: A generalized linear and nonlinear approach. Statistics for Social and Behavioral Sciences). New York: Springer-Verlag.

Duncan, O. D. (1984). Notes on social measurement: Historical and critical. New York: Russell Sage Foundation.

Dykman, M. I., & McClintock, P. V. E. (1998, January 22). What can stochastic resonance do? Nature, 391(6665), 344.

Fisher, W. P., Jr. (1992, Spring). Stochastic resonance and Rasch measurement. Rasch Measurement Transactions, 5(4), 186-187 [http://www.rasch.org/rmt/rmt54k.htm].

Fisher, W. P., Jr. (1997). Physical disability construct convergence across instruments: Towards a universal metric. Journal of Outcome Measurement, 1(2), 87-113.

Fisher, W. P., Jr. (1999). Foundations for health status metrology: The stability of MOS SF-36 PF-10 calibrations across samples. Journal of the Louisiana State Medical Society, 151(11), 566-578.

Fisher, W. P., Jr. (2011). Stochastic and historical resonances of the unit in physics and psychometrics. Measurement: Interdisciplinary Research & Perspectives, 9, 46-50.

Fisher, W. P., Jr., Harvey, R. F., Taylor, P., Kilgore, K. M., & Kelly, C. K. (1995, February). Rehabits: A common language of functional assessment. Archives of Physical Medicine and Rehabilitation, 76(2), 113-122.

Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.

Galison, P. (1999). Trading zone: Coordinating action and belief. In M. Biagioli (Ed.), The science studies reader (pp. 137-160). New York: Routledge.

Galison, P., & Stump, D. J. (1996). The disunity of science: Boundaries, contexts, and power. Palo Alto, California: Stanford University Press.

Hess, S. M., & Albano, A. M. (1998, February). Minimum requirements for stochastic resonance in threshold systems. International Journal of Bifurcation and Chaos, 8(2), 395-400.

Karabatsos, G., & Ullrich, J. R. (2002). Enumerating and testing conjoint measurement models. Mathematical Social Sciences, 43, 487-505.

Kuhn, T. S. (1961). The function of measurement in modern physical science. Isis, 52(168), 161-193. (Rpt. in T. S. Kuhn, (Ed.). (1977). The essential tension: Selected studies in scientific tradition and change (pp. 178-224). Chicago: University of Chicago Press.)

Linacre, J. M. (2011). A user’s guide to WINSTEPS Rasch-Model computer program, v. 3.72.0. Chicago, Illinois: Winsteps.com.

Linacre, J. M. (2013). A user’s guide to FACETS Rasch-Model computer program, v. 3.71.0. Chicago, Illinois: Winsteps.com.

Mandelbrot, B. (2004). The misbehavior of markets. New York: Basic Books.

Massof, R. W., & Ahmadian, L. (2007, July). What do different visual function questionnaires measure? Ophthalmic Epidemiology, 14(4), 198-204.

Moskowitz, M. T., & Dickinson, B. W. (2002). Stochastic resonance in speech recognition: Differentiating between /b/ and /v/. Proceedings of the IEEE International Symposium on Circuits and Systems, 3, 855-858.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Repperger, D. W., & Farris, K. A. (2010, July). Stochastic resonance –a nonlinear control theory interpretation. International Journal of Systems Science, 41(7), 897-907.

Riani, M., & Simonotto, E. (1994). Stochastic resonance in the perceptual interpretation of ambiguous figures: A neural network model. Physical Review Letters, 72(19), 3120-3123.

Smith, R. M., & Plackner, C. (2009). The family approach to assessing fit in Rasch measurement. Journal of Applied Measurement, 10(4), 424-437.

Smith, R. M., & Taylor, P. (2004). Equating rehabilitation outcome scales: Developing common metrics. Journal of Applied Measurement, 5(3), 229-42.

Stenner, A. J., Fisher, W. P., Jr., Stone, M. H., & Burdick, D. S. (2013, August). Causal Rasch models. Frontiers in Psychology: Quantitative Psychology and Measurement, 4(536), 1-14 [doi: 10.3389/fpsyg.2013.00536].

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010, 29 October). Evidence for a collective intelligence factor in the performance of human groups. Science, 330, 686-688.

Woolley, A. W., & Fuchs, E. (2011, September-October). Collective intelligence in the organization of science. Organization Science, 22(5), 1359-1367.

Wu, M. L., Adams, R. J., Wilson, M. R., Haldane, S.A. (2007). ACER ConQuest Version 2: Generalised item response modelling software. Camberwell: Australian Council for Educational Research.

Reimagining Capitalism Again, Part III: Reflections on Greider’s “Bold Ideas” in The Nation

September 10, 2011

And so, The Nation’s “Bold Ideas for a New Economy” is disappointing for not doing more to start from the beginning identified by its own writer, William Greider. The soul of capitalism needs to be celebrated and nourished, if we are to make our economy “less destructive and domineering,” and “more focused on what people really need for fulfilling lives.” The only real alternative to celebrating and nourishing the soul of capitalism is to kill it, in the manner of the Soviet Union’s failed experiments in socialism and communism.

The article speaks the truth, though, when it says there is no point in trying to persuade the powers that be to make the needed changes. Republicans see the market as it exists as a one-size-fits-all economic panacea, when all it can accomplish in its current incomplete state is the continuing externalization of anything and everything important about human, social, and environmental decency. For their part, Democrats do indeed “insist that regulation will somehow fix whatever is broken,” in an ever-expanding socialistic micromanagement of every possible exception to the rules that emerges.

To date, the president’s efforts at a nonpartisan third way amount only to vacillations between these opposing poles. The leadership that is needed, however, is something else altogether. Yes, as The Nation article says, capitalism needs to be made to serve the interests of society, and this will require deep structural change, not just new policies. But none of the contributors of the “bold ideas” presented propose deep structural changes of a kind that actually gets at the soul of capitalism. All of the suggestions are ultimately just new policies tweaking superficial aspects of the economy in mechanical, static, and very limited ways.

The article calls for “Democratizing reforms that will compel business and finance to share decision-making and distribute rewards more fairly.” It says the vision has different names but “the essence is a fundamental redistribution of power and money.” But corporate distortions of liability law, the introduction of boardroom watchdogs, and a tax on financial speculation do not by any stretch of the imagination address the root causes of social and environmental irresponsibility in business. They “sound like obscure technical fixes” because that’s what they are. The same thing goes for low-cost lending from public banks, the double or triple bottom lines of Benefit Corporations, new anti-trust laws, calls for “open information” policies, added personal stakes for big-time CEOs, employee ownership plans, the elimination of tax subsidies for, new standards for sound investing, new measures of GDP, and government guarantees of full employment.

All of these proposals sound like what ought to be the effects and outcomes of efforts addressing the root causes of capitalisms’ shortcomings. Instead, they are band aids applied to scratched fingers and arms when multiple by-pass surgery is called for. That is, what we need is to understand how to bring the spirit of capitalism to life in the new domains of human, social, and environmental interests, but what we’re getting are nothing but more of the same piecemeal ways of moving around the deck chairs on the Titanic.

There is some truth in the assertion that what really needs reinventing is our moral and spiritual imagination. As someone (Einstein or Edison?) is supposed to have put it, originality is simply a matter of having a source for an analogy no one else has considered. Ironically, the best model is often the one most taken for granted and nearest to hand. Such is the case with the two-sided scientific and economic effects of standardized units of measurement. The fundamental moral aspect here is nothing other than the Golden Rule, independently derived and offered in cultures throughout history, globally. Individualized social measurement is nothing if not a matter of determining whether others are being treated in the way you yourself would want to be treated.

And so, yes, to stress the major point of agreement with The Nation, “the new politics does not start in Washington.” Historically, at their best, governments work to keep pace with the social and technical innovations introduced by their peoples. Margaret Mead said it well a long time ago when she asserted that small groups of committed citizens are the only sources of real social change.

Not to be just one of many “advocates with bold imaginations” who wind up marginalized by the constraints of status quo politics, I claim my personal role in imagining a new economic future by tapping as deeply as I can into the positive, pre-existing structures needed for a transition into a new democratic capitalism. We learn through what we already know. Standards are well established as essential to commerce and innovation, but 90% of the capital under management in our economy—the human, social, and natural capital—lacks the standards needed for optimal market efficiency and effectiveness. An intangible assets metric system will be a vitally important way in which we extend what is right and good in the world today into new domains.

To conclude, what sets this proposal apart from those offered by The Nation and its readers hinges on our common agreement that “the most threatening challenge to capitalism is arguably the finite carrying capacity of the natural world.” The bold ideas proposed by The Nation’s readers respond to this challenge in ways that share an important feature in common: people have to understand the message and act on it. That fact dooms all of these ideas from the start. If we have to articulate and communicate a message that people then have to act on, we remain a part of the problem and not part of the solution.

As I argue in my “The Problem is the Problem” blog post of some months ago, this way of defining problems is itself the problem. That is, we can no longer think of ourselves as separate from the challenges we face. If we think we are not all implicated through and through as participants in the construction and maintenance of the problem, then we have not understood it. The bold ideas offered to date are all responses to the state of a broken system that seek to reform one or another element in the system when what we need is a whole new system.

What we need is a system that so fully embodies nature’s own ecological wisdom that the medium becomes the message. When the ground rules for economic success are put in place such that it is impossible to earn a profit without increasing stocks of human, social, and natural capital, there will be no need to spell out the details of a microregulatory structure of controlling new anti-trust laws, “open information” policies, personal stakes for big-time CEOs, employee ownership plans, the elimination of tax subsidies, etc. What we need is precisely what Greider reported from Innovest in his book: reliable, high quality information that makes human, social, and environmental issues matter financially. Situated in a context like that described by Bernstein in his 2004 The Birth of Plenty, with the relevant property rights, rule of law, scientific rationality, capital markets, and communications networks in place, it will be impossible to stop a new economic expansion of historic proportions.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Reimagining Capitalism Again, Part II: Scientific Credibility in Improving Information Quality

September 10, 2011

The previous posting here concluded with two questions provoked by a close consideration of a key passage in William Greider’s 2003 book, The Soul of Capitalism. First, how do we create the high quality, solid information markets need to punish and reward relative to ethical and sustainable human, social, and environmental values? Second, what can we learn from the way we created that kind of information for property and manufactured capital? There are good answers to these questions, answers that point in productive directions in need of wide exploration and analysis.

The short answer to both questions is that better, more scientifically rigorous measurement at the local level needs to be implemented in a context of traceability to universally uniform standards. To think global and act local simultaneously, we need an efficient and transparent way of seeing where we stand in the world relative to everyone else. Having measures expressed in comparable and meaningful units is an important part of how we think global while acting local.

So, for markets to punish and reward businesses in ways able to build human, social, and environmental value, we need to be able to price that value, to track returns on investments in it, and to own shares of it. To do that, we need a new intangible assets metric system that functions in a manner analogous to the existing metric system and other weights and measures standards. In the same way these standards guarantee high quality information on volume, weight, thermal units, and volts in grocery stores and construction sites, we need a new set of standards for human abilities, performances, and health; for social trust, commitment, and loyalty; and for the environment’s air and water processing services, fisheries, gene pools, etc.

Each industry needs an instrumentarium of tools and metrics that mediate relationships universally within its entire sphere of production and/or service. The obvious and immediate reaction to this proposal will likely be that this is impossible, that it would have been done by now if it was possible, and that anyone who proposes something like this is simply unrealistic, perhaps dangerously so. So, here we have another reason to add to those given in the June 8, 2011 issue of The Nation (http://www.thenation.com/article/161267/reimagining-capitalism-bold-ideas-new-economy) as to why bold ideas for a new economy cannot gain any traction in today’s political discourse.

So what basis in scientific authority might be found for this audacious goal of an intangible assets metric system? This blog’s postings offer multiple varieties of evidence and argument in this regard, so I’ll stick to more recent developments, namely, last week’s meeting of the International Measurement Confederation (IMEKO) in Jena, Germany. Membership in IMEKO is dominated by physicists, engineers, chemists, and clinical laboratorians who work in private industry, academia, and government weights and measures standards institutes.

Several IMEKO members past and present are involved with one or more of the seven or eight major international standards organizations responsible for maintaining and improving the metric system (the Systeme Internationale des Unites). Two initiatives undertaken by IMEKO and these standards organizations take up the matter at issue here concerning the audacious goal of standard units for human, social, and natural capital.

First, the recently released third edition of the International Vocabulary of Measurement (VIM, 2008) expands the range of the concepts and terms included to encompass measurement in the human and social sciences. This first effort was not well informed as to the nature of widely realized state of the art developments in measurement in education, health care, and the social sciences. What is important is that an invitation to further dialogue has been extended from the natural to the social sciences.

That invitation was unintentionally accepted and a second initiative advanced just as the new edition of the VIM was being released, in 2008. Members of three IMEKO technical committees (TC 1-7-13; those on Measurement Science, Metrology Education, and Health Care) cultivate a special interest in ideas on the human and social value of measurement. At their 2008 meeting in Annecy, France, I presented a paper (later published in revised form as Fisher, 2009) illustrating how, over the previous 50 years and more, the theory and practice of measurement in the social sciences had developed in ways capable of supporting convenient and useful universally uniform units for human, social, and natural capital.

The same argument was then advanced by my fellow University of Chicago alum, Nikolaus Bezruczko, at the 2009 IMEKO World Congress in Lisbon. Bezruczko and I both spoke at the 2010 TC 1-7-13 meeting in London, and last week our papers were joined by presentations from six of our colleagues at the 2011 IMEKO TC 1-7-13 meeting in Jena, Germany. Another fellow U Chicagoan, Mark Wilson, a long time professor in the Graduate School of Education at the University of California, Berkeley, gave an invited address contrasting four basic approaches to measurement in psychometrics, and emphasizing the value of methods that integrate substantive meaning with mathematical rigor.

Examples from education, health care, and business were then elucidated at this year’s meeting in Jena by myself, Bezruczko, Stefan Cano (University of Plymouth, England), Carl Granger (SUNY, Buffalo; paper presented by Bezruczko, a co-author), Thomas Salzberger (University of Vienna, Austria), Jack Stenner (MetaMetrics, Inc., Durham, NC, USA), and Gordon Cooper (University of Western Australia, Crawley, WA, Australia; paper presented by Fisher, a co-author).

The contrast between these presentations and those made by the existing IMEKO membership hinges on two primary differences in focus. The physicists and engineers take it for granted that all instrument calibration involves traceability to metrological reference standards. Dealing as they are with existing standards and physical or chemical materials that usually possess deterministically structured properties, issues of how to construct linear measures from ordinal observations never come up.

Conversely, the social scientists and psychometricians take it for granted that all instrument calibration involves evaluations of the capacity of ordinal observations to support the construction of linear measures. Dealing as they are with data from tests, surveys, and rating scale assessments, issues of how to relate a given instrument’s unit to a reference standard never come up.

Thus there is significant potential for mutually instructive dialogue between natural and social scientists in this context. Many areas of investigation in the natural sciences have benefited from the introduction of probabilistic concepts in recent decades, but there are perhaps important unexplored opportunities for the application of probabilistic measurement, as opposed to statistical, models. By taking advantage of probabilistic models’ special features, measurement in education and health care has begun to realize the benefit of broad generalizations of comparable units across grades, schools, tests, and curricula.

Though the focus of my interest here is in the capacity of better measurement to improve the efficiency of human, social, and natural capital markets, it may turn out that as many or more benefits will accrue in the natural sciences’ side of the conversation as in the social sciences’ side. The important thing for the time being is that the dialogue is started. New and irreversible mutual understandings between natural and social scientists have already been put on the record. It may happen that the introduction of a new supply of improved human, social, and natural capital metrics will help articulate the largely, as yet, unstated but nonetheless urgent demand for them.

Fisher, W. P., Jr. (2009, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.