Posts Tagged ‘complexity’

Cartesian problems cannot be solved by Cartesian solutions, no matter where those solutions originate

April 13, 2019

Trying to persuade or educate individuals to change the way they think and act, by pointing to the facts or by making emotional or moral appeals, seems always and everywhere to be the default go-to solution for those interested in addressing social and environmental problems. I suppose that approach works to varying degrees for different issues, but behavior change never occurs on as massive a scale as when it is mediated by a technology that enables people to do something they value.

The meaning of McLuhan’s expression, “the medium is the message,” and the long history of the many ways in which technologies transform cultures, for better and for worse, all seem utterly lost and forgotten when it comes to efforts aimed at provoking culture change. The ongoing discourses of environmental and social justice inevitably always seem to come back to targeting individual decisions and behaviors as the only recourse for effecting change.

But history teaches us that, if we want to change our values, we have to figure out how to embed the new terms in virally communicable metaphors that enthrall imaginations and captivate people’s attention and interest. Cultures turn on shared meanings that make some behaviors more likely than others. Good metaphors (“love is a rose;” “God is love”) organize experience in ways that allow infinite creative variations on the theme while also lending just a bit of structure and predictability to how things play out. We need to root new metaphors embodying shared human values in information infrastructures that operationalize consensus standards as the common currencies in which those values circulate.

Though the ongoing culture wars seem to suggest wildly divergent values in play across communities, research in developmental psychology strongly indicates that these differences are not what they seem. No matter what their politics, people need to feel valued, to have stable identities, to be recognized as someone of worth, to have a place of dignity in a community, to be trusted, and to see that others enjoy all of these qualities as well. Experience shows that these conditions cannot be implemented by a simple decree or force of will. Broad general conditions have to be cultivated in ways that make the emergence of abundant social capital resources more likely.

A point of entry into thinking about how those conditions might be created is provided by a 2010 quote in the Miami Herald from Gus Speth, former Dean of the Yale School of Forestry and Environmental Studies (http://tinyurl.com/y7mqtzzn). Speth recounts his sense that scientific solutions to ecosystem and climate problems are insufficient because the actual causes of the problems are greed, selfishness, and apathy. So he appeals to religious leaders for help.

But Speth’s moral diagnosis is as misconceived and uninformed as his original scientific one. As has been the topic of multiple posts in this blog, many of today’s problems cannot be solved using the same kind of Cartesian dualist thinking that was used in creating those problems. Voluminous citations in those earlier posts tap a large literature in the philosophy, history, and social studies of science describing a diverse array of examples of nondualist ecosystem thinking and acting (for instance, see references below). These works show how technological media fuse, embody, distribute, and enact social, moral, aesthetic, economic, and scientific values in complex multilevel metasystems (systems of systems). Moral values of fairness, for instance, are embedded in the quantitative values of measurement technologies exported from laboratories into markets where they inform economic values in trade.

Our task is to learn from these examples so that we can develop and deploy new languages that resonate with new values in analogous ways across similarly diverse cultural domains. Beauty, meaning, and poetry have to be as important as logic, mathematics, and science. Readily available theory and evidence already show how all of these are playing their roles in the evolving cultural transformation.

And, fortunately for humanity as well as for the earth, the new nondualist noncartesian solutions will not and cannot be primarily an outcome of deliberate intentions and conscious willpower. On the contrary, these integrated problem-solution monads are living, organic, self-organizing embodiments of ideas that captivate imaginations and draw creative, entrepreneurial energies in productive directions.

Of course, this kind of thing has happened many times in the past, though it has not previously emerged as a result of the kind of cultivated orchestration occurring today. Williamson, North, Ostrom, Coase, and others describe the roles institutions have played in setting up the rules, roles, and responsibilities of efficient markets. Today, new institutions are arising in a context of reproducible scientific results supporting ownership of, investments in, and profits harvested from sustainable impacts measured and managed via virally communicable media spreading social contagions of love and care. This is coming about because we all seek and value meaning and beauty right along with the capacity to enjoy life, liberty, and prosperity. However differently we each define and experience meaning and beauty, caring for the unity and sameness of the objects of the conversations that we are enables us to balance harmonies and dissonances in endless variations performed by every imaginable kind of rhythmic and melodic musical ensemble.

So instead of expecting different results from repeated applications of the same dualistic thinking that got us into today’s problems, we need to think and act nondualistically. Instead of assuming that solutions do not themselves already presuppose and embody problems of a certain type, we need to think in terms of integrated problem-solution monads deployed throughout ecosystems like species in symbiotic relationships. This is precisely what’s happened historically with the oil-automobile-highway-plastics-engineering ecosystem, and with the germ-disease-pharmaceutical-public health-medicine ecosystem. In each case, financial, market, accounting, regulatory, legal, educational, and other institutions evolved in tandem with the emerging sociotechnical ecology.

Now we face urgent needs to think and act on previously unheard of scales and levels of complexity. We have to work together and coordinate efforts in social and psychological domains with no previous history of communications capable of functioning at the needed efficiencies.

But merely urging people to live differently will never result in the changes that must be brought about. No matter how compelling the facts, no matter how persuasive the emotional power, and no matter how inspirational the moral argument, individual people and small groups simply cannot create new shared standards of behavior out of thin air. We are all products of our times and our sociocultural environments. People cannot be expected to simply wake up one day and spontaneously transform their habits by an effort of will. Instead, the values of fairness, equity, inclusion, and justice we say we live by must be embedded within the very fabric of everyday life, the way hours, meters, liters, degrees, grams, and volts are now.

That is, measurements read off instruments calibrated in fair units of comparison—measurements mathematically equivalent to those made with the scales of justice, measurements expressed in the common metrics of a new international system of units, and measurements as adaptable to local individual improvisations as they are generally comparable and navigable—have to be built into every institution in just the same way existing units of measurement are. Education, health care, social services, human resource management, environmental solutions—all of these and more need to attend closely to ways in which the objects of conversation can be more systematically expressed in meaningful words. Ecosystem thinking demands that everyone and everything in a system of relationships must be consistently kept in proportionate contact, within ranges of reported uncertainty, instead of being disconnected off into separate incommensurable universes of discourse, as occurs in today’s institutions.

These are all monumentally huge challenges. But much of the hardest work has been underway for decades, with important results and resources spreading into widely used applications often taken for granted in the background of largely unexamined assumptions. These results are now well enough established, and the associated social and environmental problems are so serious, that more can and should be done to put them to use.

The need for new values is indeed urgent, but empty talk and doing more of the same is getting us nowhere, at best, and more often is worsening conditions. Conceptual determinations of reproducible mathematical values embodying people’s lived social and moral values in fungible economic values are not just theoretical possibilities or provisional experimental results. They are longstanding, widely available, and practical, as well as beautiful and meaningful. With attentive cultivation and nurturing, there are abundant reasons for believing in a safe, healthy, happy, and prosperous future for humanity and life on earth.

References

Akera, A. (2007). Constructing a representation for an ecology of knowledge. Social Studies of Science, 37(3), 413-441.

Barney, M., & Fisher, W. P., Jr. (2016, April). Adaptive measurement and assessment. Annual Review of Organizational Psychology and Organizational Behavior, 3, 469-490.

Blok, A., Nakazora, M., & Winthereik, B. R. (2016). Infrastructuring environments. Science as Culture, 25(1), 1-22.

Bowker, G. C. (2016). How knowledge infrastructures learn. In P. Harvey, C. B. Jensen & A. Morita (Eds.), Infrastructures and social complexity: A companion (pp. 391-403). New York: Routledge.

Bowker, G., Timmermans, S., Clarke, A. E., & Balka, E. (Eds). (2015). Boundary objects and beyond: Working with Leigh Star. Cambridge, MA: MIT Press.

Brain, R. (1998). Standards and semiotics. In T. Lenoir (Ed.), Inscribing science: Scientific texts and the materiality of communication (pp. 249-w84). Stanford, California: Stanford University Press.

Cano, S. J., & Hobart, J. C. (2011). The problem with health measurement. Patient Preference and Adherence, 5, 279-290.

Cano, S., Klassen, A. F., & Pusic, A. L. (2009). The science behind quality-of-life measurement: A primer for plastic surgeons. Plastic and Reconstructive Surgery, 123(3), 98e-106e.

Cano, S., Melin, J., Fisher, W. P., Jr., Stenner, A. J., Pendrill, L., & EMPIR NeuroMet 15HLT04 Consortium. (2018). Patient-centred cognition metrology. Journal of Physics: Conference Series, 1065, 072033.

Cano, S., Pendrill, L., Barbic, S., & Fisher, W. P., Jr. (2018). Patient-centred outcome metrology for healthcare decision-making. Journal of Physics: Conference Series, 1044, 012057.

Cano, S., Pendrill, L., Melin, J., & Fisher, W. P., Jr. (2019). Towards consensus measurement standards for patient-centered outcomes. Measurement, in press.

Dawson, T. L. (2002, Summer). A comparison of three developmental stage scoring systems. Journal of Applied Measurement, 3(2), 146-89.

Dawson, T. L. (2002, March). New tools, new insights: Kohlberg’s moral reasoning stages revisited. International Journal of Behavioral Development, 26(2), 154-66.

Dawson, T. L. (2004, April). Assessing intellectual development: Three approaches, one sequence. Journal of Adult Development, 11(2), 71-85.

Dawson, T. L., & Stein, Z. (2011). We are all learning here: Cycles of research and application in adult development. In C. Hoare (Ed.), The Oxford handbook of reciprocal adult development and learning, 2nd Ed. (pp. 447-460). Oxford, England: Oxford University Press.

Fisher, W. P., Jr. (2009, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement: Concerning Foundational Concepts of Measurement Special Issue Section, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009). NIST Critical national need idea White Paper: Metrological infrastructure for human, social, and natural capital (http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC:. National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010, November 22). The birds and the bees of living meaning. LivingCapitalMetrics blog. https://livingcapitalmetrics.wordpress.com/2010/11/22/the-birds-and-the-bees-of-living-meaning/.

Fisher, W. P., Jr. (2010). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital, Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340674).

Fisher, W. P., Jr. (2011). Metaphor as measurement, and vice versa: Convergence and separation of figure and meaning in a Mawri proverb [Modified version of a paper presented to the African Studies Association, 1996]. Social Science Research Network. http://ssrn.com/abstract=1747967

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012, June 1). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2013). Imagining education tailored to assessment as, for, and of learning: Theory, standards, and quality improvement. Assessment and Learning, 2, 6-22.

Fisher, W. P., Jr. (2014). The central theoretical problem of the social sciences. Rasch Measurement Transactions, 28(2), 1464-1466. http://www.rasch.org/rmt/rmt282.pdf

Fisher, W. P., Jr. (2017, September). Metrology, psychometrics, and new horizons for innovation. 18th International Congress of Metrology, Paris, 09007 [https://cfmetrologie.edpsciences.org/articles/metrology/pdf/2017/01/metrology_metr2017_09007.pdf].

Fisher, W. P., Jr. (2017). A practical approach to modeling complex adaptive flows in psychology and social science. Procedia Computer Science, 114, 165-174. https://doi.org/10.1016/j.procs.2017.09.027

Fisher, W. P., Jr. (2019). How beauty teaches us to understand meaning, in revision.

Fisher, W. P., Jr. (2019). A nondualist social ethic: Fusing subject and object horizons in measurement. TMQ–Techniques, Methodologies, and Quality, in press.

Fisher, W. P., Jr., & Cavanagh, R. (2016). Measurement as a medium for communication and social action, I & II. In Q. Zhang & H. H. Yang (Eds.), Pacific Rim Objective Measurement Symposium (PROMS) 2015 Conference Proceedings (pp. 153-182). Berlin: Springer-Verlag.

Fisher, W. P., Jr., & Oon, E. P.-T. (2019). Information coherence and complexity across contexts: Negotiating discontinuities in educational assessment infrastructures. Information Systems Research, in review.

Fisher, W. P., Jr., Oon, E. P.-T., & Benson, S. (2018). Applying Design Thinking to systemic problems in educational assessment information management. Journal of Physics Conference Series, 1044, 012012 [http://iopscience.iop.org/article/10.1088/1742-6596/1044/1/012012].

Fisher, W. P., Jr., Oon, E. P.-T., & Benson, S. (2019). Rethinking the role of educational assessment in classroom communities: How can design thinking address the problems of coherence and complexity? Measurement, in review.

Fisher, W. P., Jr., & Stenner, A. J. (2011, January 1). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series). http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36

Fisher, W. P., Jr., & Stenner, A. J. (2013). On the potential for improved measurement in the human and social sciences. In Q. Zhang & H. Yang (Eds.), Pacific Rim Objective Measurement Symposium 2012 Conference Proceedings (pp. 1-11). Berlin, Germany: Springer-Verlag.

Fisher, W. P., Jr., & Stenner, A. J. (2016). Theory-based metrological traceability in education: A reading measurement network. Measurement, 92, 489-496.

Fisher, W. P., Jr., & Stenner, A. J. (2018). Ecologizing vs modernizing in measurement and metrology. Journal of Physics Conference Series, 1044, 012025.

Fisher, W. P., Jr., & Stenner, A. J. (2017, September 18). Towards an alignment of engineering and psychometric approaches to uncertainty in measurement: Consequences for the future. 18th International Congress of Metrology, 12004, 1-9. https://doi.org/10.1051/metrology/201712004

Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.

Golinski, J. (2012). Is it time to forget science? Reflections on singular science and its history. Osiris, 27(1), 19-36.

Hutchins, E. (2014). The cultural ecosystem of human cognition. Philosophical Psychology, 27(1), 34-49.

Jasanoff, S. (2005). Designs on nature: Science and democracy in Europe and the United States. Princeton, NJ: Princeton University Press.

Jasanoff, S. (2015). Future imperfect: Science, technology, and the imaginations of modernity. In S. Jasanoff & S.-H. Kim (Eds.), Dreamscapes of modernity: Sociotechnical imaginaries and the fabrication of power (pp. 1-22). Chicago: University of Chicago Press.

Jasanoff, S., & Martello, M. L. (Eds.) (2004). Earthly politics: Local and global in environmental governance. (Politics, Science, and the Environment). Cambridge, MA: MIT Press.

Kjellberg, H., & Helgesson, C.-F. (2006). Multiple versions of markets: Multiplicity and performativity in marketing practice. Industrial Marketing Management, 35, 839-855.

Lampland, M., & Star, S. L. (Eds.). (2008). Standards and their stories: How quantifying, classifying, and formalizing practices shape everyday life. Ithaca, NY: Cornell University Press.

Latour, B. (1990). Postmodern? No, simply amodern: Steps towards an anthropology of science. Studies in History and Philosophy of Science, 21(1), 145-171.

Latour, B. (1991). The impact of science studies on political philosophy. Science, Technology, & Human Values, 16(1), 3-19.

Latour, B. (1993). We have never been modern. Cambridge, Massachusetts: Harvard University Press.

Latour, B. (1998). To modernise or ecologise? That is the question. In B. Braun & N. Castree (Eds.), Remaking reality: Nature at the millennium (pp. 221-242). London: Routledge.

Latour, B. (2005). Reassembling the social: An introduction to Actor-Network-Theory. (Clarendon Lectures in Management Studies). Oxford, England: Oxford University Press.

Latour, B. (2009). On the modern cult of the factish gods (H. MacLean & C. Porter, Trans.). Durham, NC: Duke University Press.

Latour, B. (2010). Tarde’s idea of quantification. In M. Candea (Ed.), The social after Gabriel Tarde: Debates and assessments (pp. 145-162). London: Routledge.

Latour, B. (2011). Love your monsters: Why we must care for our technologies as we do our children. Breakthrough Journal, 2, 21-28. http://thebreakthrough.org/index.php/journal/past-issues/issue-2/love-your-monsters

Latour, B. (2014, February 26). On some of the affects of capitalism. Lecture given at the Royal Academy, Copenhagen, Denmark. Retrieved from http://www.bruno-latour.fr/sites/default/files/136-AFFECTS-OF-K-COPENHAGUE.pdf.

Latour, B., & Callon, M. (2011). “Thou shall not calculate!” or how to symmetricalize gift and capital. Revista De Pensamiento e Investifation Social, 11(1), 171-192.

Latour, B., & Lépinay, V. A. (2010). The science of passionate interests: An introduction to Gabriel Tarde’s economic anthropology. Chicago: Prickly Paradigm Press.

Lenoir, T. (Ed.). (1997). Instituting science: The cultural production of scientific disciplines (T. Lenoir & H. U. Gumbrecht, Eds.). Writing Science. Stanford, CA: Stanford University Press.

Lenoir, T. (1998). Inscribing science: Scientific texts and the materiality of communication. Stanford, California: Stanford University Press.

Li, E. Y., Commons, M. L., Miller, J. G., Robbinet, T. L., Marchand, H., Ost, C. M. et al. (2014, September). Relationship among measures within the social and moral development domain. Behavioral Development Bulletin, 19(3), 106-113.

Nersessian, N. J. (2012). Engineering concepts: The interplay between concept formation and modeling practices in bioengineering sciences. Mind, Culture, and Activity, 19, 222-239.

Nersessian, N. J. (2015). Conceptual innovation on the frontiers of science. In E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in the study of concepts (pp. 455-474). Cambridge, MA: MIT Press.

Nespor, J. (2011). Devices and educational change. Educational Philosophy and Theory, 43(S1).

Overton, W. F. (2015). Processes, relations and Relational-Developmental-Systems. In W. F. Overton & P. C. M. Molenaar (Eds.), Theory and Method. Volume 1 of the Handbook of child psychology and developmental science (7th Ed.) (pp. 9-62). Hoboken, NJ: Wiley.

Schaffer, S. (1992). Late Victorian metrology and its instrumentation: A manufactory of Ohms. In R. Bud & S. E. Cozzens (Eds.), Invisible connections: Instruments, institutions, and science (pp. 23-56). Bellingham, WA: SPIE Optical Engineering Press.

Schaffer, S. (1997). Metrology, metrication, and Victorian values. In B. Lightman (Ed.), Victorian science in context (pp. 438-474). Chicago: University of Chicago Press.

Shapin, S. (1994). A social history of truth: Civility and science in seventeenth-century England. Chicago, Illinois: University of Chicago Press.

Shapin, S., & Schaffer, S. (1985). Leviathan and the air-pump: Hobbes, Boyle, and the experimental life. Princeton, NJ: Princeton University Press.

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Advertisements

Self-Sustaining Sustainability

August 6, 2018

After decades of efforts and massive resources expended in trying to create a self-sustaining sustainable economy, perhaps it is time to wonder if we are going about it the wrong way. There seems to be truly significant and widespread desire for change, but the often inspiring volumes of investments and ingenuity applied to the problem persistently prove insufficient to the task. Why?

I’ve previously and repeatedly explained how finding the will to change is not the issue. This time I’ll approach my proposed solution in a different way.

Q: How do we create a self-sustaining sustainable economy?

A: By making sustainability profitable in monetary terms as well as in the substantive real terms of the relationships we live out with each other and the earth. Current efforts in this regard focus solely on reducing energy costs enough to compensate for investments in advancing the organizational mission. We need far more comprehensively designed solutions than that.

Q: How do we do that?

A: By financially rewarding improved sustainability at every level of innovation, from the individual to the community to the firm.

Q: How do we do that?

A: By instituting rights to the ownership of human, social, and natural capital properties, and by matching the demand for sustainability with the supply of it in a way that will inform arbitrage and pricing.

Q: How do we do that?

A: By lowering the cost of the information needed to be able to know how many shares of human, social, and natural capital stocks are owned, and to match demand with supply.

Q: How could that be done?

A: By investing as a society in improving the quality and distribution of the available information.

Q: What does that take?

A: Creating dependable and meaningful tools for ascertaining the quantity, quality, and type of sustainability impacts on human, social, and natural capital being offered.

Q: Can that be done?

A: The technical art and science of measurement needed for creating these tools is well established, having been in development for almost 100 years.

Q: How do we start?

A: An important lesson of history is that building the infrastructure and its array of applications follows in the wake of, and cannot precede, the institution of the constitutional ideals. We must know what the infrastructure and applications will look like in their general features, but nothing will ever be done if we think we have to have them in place before instantiating the general frame of reference. The most general right to own legal title to human, social, and natural capital can be instituted, and the legal status of new metric system units can be established, before efforts are put into unit standards, traceability processes, protocols for intralaboratory ruggedness tests and interlaboratory round robin trials, conformity assessments, etc.

Q: It sounds like an iterative process.

A: Yes, one that must attend from the start to the fundamental issues of information coherence and complexity, as is laid out in my recent work with Emily Oon, Spencer Benson, Jack Stenner, and others.

Q: This sounds highly technical, utilitarian, and efficient. But all the talk of infrastructure, standards, science, and laboratories sounds excessively technological. Is there any place in this scheme for ecological values, ethics, and aesthetics? And how are risk and uncertainty dealt with?

A: We can take up each of these in turn.

Ecological values: To use an organic metaphor, we know the DNA of the various human, social, and natural capital forms of life, or species, and we know their reproductive and life cycles, and their ecosystem requirements. What we have not done is to partner with each of these species in relationships that focus on maximizing the quality of their habitats, their maturation, and the growth of their populations. Social, psychological, and environmental relationships are best conceived as ecosystems of mutual interdependencies. Being able to separate and balance within-individual, between-individual, and collective levels of complexity in these interdependencies will be essential to the kinds of steward leadership needed for creating and maintaining new sociocognitive ecosystems. Our goal here is to become the change we want to institute, since caterpillar to butterfly metamorphoses come about only via transformations from within.

Ethics: The motivating intention is to care simultaneously and equally effectively for both individual uniqueness and global humanity. In accord with the most fundamental ethical decision, we choose discourse over violence, and we do so by taking language as the model for how things come into words. Language is itself alive in the sense of the collective processes by which new meanings come into it. Language moreover has the remarkable capacity of supporting local concrete improvisations and creativity at the same time that it provides navigable continuity and formal ideals. Care for the unity and sameness of meaning demands a combination of rigorous conceptual determinations embodied in well-defined words with practical applications of those words in local improvisations. That is how we support the need to make decisions with inevitably incomplete and inconsistent information while not committing the violence of the premature conclusion. The challenge is one of finding a balance between openness and boundaries that allows language and our organizational cultures to be stable while also evolving. Our technical grasp of complex adaptive systems, autopoiesis, and stochastic measurement information models is advanced enough to meet these ethical requirements of caring for ourselves, each other, and the earth.

Aesthetics: An aesthetic desire for and love of beauty roots the various forms of life inhabiting diverse niches in the proposed knowledge ecosystem and information infrastructure, and does so in the ground of the ethical choice of discourse and meaning over violence. The experience of beauty teaches us how to understand meaning. The attraction to beauty is a unique human phenomenon because it combines apparent opposites into a single complex feeling. Even when the object of desire is possessed as fully as possible, desire is not eliminated, and even when one feels the object of desire to be lost or completely out of touch, its presence and reality is still felt. So, too, with meaning: no actual instance of anything in the world ever embodies the fullness of an abstract conceptual ideal. This lesson of beauty is perhaps most plainly conveyed in music, where artists deliberately violate the standards of instrument tuning to create fascinating and absorbing combinations of harmony and dissonance from endlessly diverse ensembles. Some tunings persist beyond specific compositions to become immediately identifiable trademark sounds. In taking language as a model, the aesthetic combination of desire and possession informs the ethics of care for the unity and sameness of meaning, and vice versa. And ecological values, ethics, and aesthetics stand on par with the technical concerns of calibration and measurement.

Risk and uncertainty: Calibrating a tool relative to a unit standard is by itself already a big step toward reducing uncertainty and risk. Instead of the chaos of dozens of disconnected sustainability indicators, or the cacophony of hundreds or thousands of different tests, assessments, or surveys measuring the same things, we will have data and theory supporting interpretation of reproducible patterns. These patterns will be, and in many cases already are, embodied in instruments that further reduce risk by defining an invariant unit of comparison, simplifying interpretation, reducing opportunities for mistakes, by quantifying uncertainty, and by qualifying it in terms of the anomalous exceptions that depart from expectations. Each of these is a special feature of rigorously defined measurement that will eventually become the expected norm for information on sustainability.

For more on these themes, see my other blog posts here, my various publications, and my SSRN page.

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Revisiting The Federalist Paper No. 31 by Alexander Hamilton: An Analogy from Geometry

July 10, 2018

[John Platt’s chapters on social chain reactions in his 1966 book, The Steps to Man, provoked my initial interest in looking into his work. That work appears to be an independent development of themes that appear in more well-known works by Tarde, Hayek, McLuhan, Latour, and others, which of course are of primary concern in thinking through metrological and ecosystem issues in psychological and social measurement. My interest also comes in the context of Platt’s supervision of Ben Wright in Robert Mulliken’s physics lab at the U of Chicago in 1948. However, other chapters in this book concern deeper issues of complexity and governance that cross yet more disciplinary boundaries. One of the chapters in the book, for instance, examines the Federalist Papers and remarks on a geometric analogy drawn by Alexander Hamilton concerning moral and political forms of knowledge. The parallel with my own thinking is such that I have restated Hamilton’s theme in my own words within the contemporary context. The following is my effort in this regard. No source citations are given, but a list of supporting references is included at bottom. Hamilton’s original text is available at: https://www.congress.gov/resources/display/content/The+Federalist+Papers#TheFederalistPapers-31.  ]

 

Communication requires that we rely on the shared understandings of a common language. Language puts in play combinations of words, concepts, and things that enable us to relate to one another at varying levels of complexity. Often, we need only to convey the facts of a situation in a simple denotative statement about something learned (“the cat is on the mat”). We also need to be able to think at a higher level of conceptual complexity referred to as metalinguistic, where we refer to words themselves and how we learn about what we’ve learned (“the word ‘cat’ has no fur”). At a third, metacommunicative, level of complexity, we make statements about statements, deriving theories of learning and judgments from repeated experiences of metalinguistic learning about learning (“I was joking when I said the cat was on the mat”).

Human reason moves freely between expressions of and representations of denotative facts, metalinguistic instruments like words, and metacommunicative theories. The combination of assurances obtained from the mutual supports each of these provides the others establishes the ground in which the seeds of social, political, and economic life take root and grow. Thought itself emerges from within the way the correspondence of things, words, and concepts precedes and informs the possibility of understanding and communication.

When understanding and communication fail, that failure may come about because of mistaken perceptions concerning the facts, a lack of vocabulary, or misconceptions colored by interests, passions, or prejudices, or some combination of these three.

The maxims of geometry exhibit exactly this same pattern combining concrete data on things in the world, instruments for abstract measurement, and formal theoretical concepts. Geometry is the primary and ancient example of how the beauty of aesthetic proportions teaches us to understand meaning. Contrary to common sense, which finds these kinds of discontinuities incomprehensible, philosophy since the time of Plato’s Symposium teaches how to make meaning in the face of seemingly irreconcilable differences between the local facts of a situation and the principles to which we may feel obliged to adhere. Geometry meaningfully and usefully, for instance, represents the undrawable infinite divisibility of line segments, as with the irrational length of the hypotenuse of a right isosceles triangle that has the other two sides with lengths of 1.

This apparently absurd and counter-intuitive skipping over of the facts in the construction of the triangular figure and the summary reference to the unstateable infinity of the square root of two is so widely accepted as to provide a basis for real estate property rights that are defensible in courts of law and financially fungible. And in this everyday commonplace we have a model for separating and balancing denotative facts, instrumental words, and judicial theories in moral and political domains.

Humanity has proven far less tractable than geometry over the course of its history regarding possible sciences of morals and politics. This is understandable given humanity’s involvement in its own ongoing development. As Freud put it, humanity’s Narcissistic feeling of being the center of the universe, the crown of creation, and the master of its own mind has suffered a series of blows as it has had to come to terms with the works of Copernicus, Darwin, and Freud himself. The struggle to establish a common human identity while also celebrating individual uniqueness is an epic adventure involving billions of tragic and comedic stories of hubris, sacrifice, and accomplishment. Humanity has arrived at a point now, however, at which a certain obstinate, perverse, and disingenuous resistance to self-understanding has gone too far.

Although the mathematical sciences excel in refining the precision of their tools, longstanding but largely untapped resources for improving the meaningfulness and value of moral and political knowledge have been available for decades. “The obscurity is much oftener in the passions and prejudices of the reasoner than in the subject.” Methods for putting passions on the table for sorting out take advantage of the lessons beauty teaches about meaning and thereby support each of the three levels of complexity in communication.

At this point we encounter the special relevance of those three levels of complexity to the separation and balance of powers in government. The concrete denotative factuality of data is the concern of the executive branch, as befits its orientation to matters of practical application. The abstract metalinguistic instrumentation of words is the concern of the legislative branch, in accord with its focus on the enactment of laws and measures. And formal metacommunicative explanatory theories are the concern of the judicial branch, as is appropriate to its focus on constitutional issues.

For each of us to give our own individual understandings fair play in ways that do not give free rein to unfettered prejudices entangled in words and subtle confusions, we need to be able to communicate in terms that, so far as possible, function equally well within and across each of these levels of complexity. It is only to state the obvious to say that we lack the language needed for communication of this kind. Our moral and political sciences have not yet systematically focused on creating such languages. Outside of a few scattered works, they have not even yet consciously hypothesized the possibility of creating these languages. It is nonetheless demonstrably the case that these languages are feasible, viable, and desirable.

Though good will towards all and a desire to refrain so far as possible from overt exclusionary prejudices for or against one or another group cannot always be assumed, these are the conditions necessary for a social contract and are taken as the established basis for what follows. The choice between discourse and violence includes careful attention to avoiding the violence of the premature conclusion. If we are ever to achieve improved communication and a fuller realization of both individual liberties and social progress, the care we invest in supports for life, liberty, and the pursuit of happiness must flow from this deep source.

Given the discontinuities between language’s levels of complexity, avoiding premature conclusions means needing individualized uncertainty estimates and an associated tolerance for departures from expectations set up by established fact-word-concept associations. For example, we cannot allow a three-legged horse to alter our definition of horses as four-legged animals. Neither should we allow a careless error or lucky guess to lead to immediate and unqualified judgments of learning in education. Setting up the context in which individual data points can be understood and explained is the challenge we face. Information infrastructures supporting this kind of contextualization have been in development for years.

To meet the need for new communicative capacities, features of these information infrastructures will have to include individualized behavioral feedback mechanisms, minimal encroachments on private affairs, managability, modifiability, and opportunities for simultaneously enhancing one’s own interests and the greater good.

It is in this latter area that our interests are now especially focused. Our audacious but not implausible goal is to find ways of enhancing communication and the quality of information infrastructures by extending beauty’s lessons for meaning into new areas. In the same way that geometry facilitates leaps from concrete figures to abstract constructions and from there to formal ideals, so, too, must we learn, learn about that learning, and develop theories of learning in other less well materialized areas, such as student-centered education, and patient-centered health care. Doing so will set the stage for new classes of human, social, and natural capital property rights that are just as defensible in courts of law and financially fungible as real estate.

When that language is created, when those rights are assigned, and when that legal defensibility and financial fungibility are obtained, a new construction of government will follow. In it, the separation and balance of executive, legislative, and judicial powers will be applied with equal regularity and precision down to the within-individual micro level, as well as at the between-individual meso level, and at the social macro level. This distribution of freedom and responsibility across levels and domains will feed into new educational, market, health, and governmental institutions of markedly different character than we have at present.

A wide range of research publications appearing over the last several decades documents unfolding developments in this regard, and so those themes will not be repeated here. Some of these publications are listed below for those interested. Far more remains to be done in this area than has yet been accomplished, to say the least.

 

 

Sources consulted or implied

Andrich, D. (2010). Sufficiency and conditional estimation of person parameters in the polytomous Rasch model. Psychometrika, 75(2), 292-308.

Bateson, G. (1972). Steps to an ecology of mind: Collected essays in anthropology, psychiatry, evolution, and epistemology. Chicago: University of Chicago Press.

Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation and Accountability, 21, 5-31.

Black, P., Wilson, M., & Yao, S. (2011). Road maps for learning: A guide to the navigation of learning progressions. Measurement: Interdisciplinary Research & Perspectives, 9, 1-52.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2005, August 1-3). Data standards for living human, social, and natural capital. In Session G: Concluding Discussion, Future Plans, Policy, etc. Conference on Entrepreneurship and Human Rights [http://www.fordham.edu/economics/vinod/ehr05.htm], Pope Auditorium, Lowenstein Bldg, Fordham University.

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009, November 19). Draft legislation on development and adoption of an intangible assets metric system. Retrieved 6 January 2011, from Living Capital Metrics blog: https://livingcapitalmetrics.wordpress.com/2009/11/19/draft-legislation/

Fisher, W. P., Jr. (2009, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement: Concerning Foundational Concepts of Measurement Special Issue Section, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (Tech. Rep. No. http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC:. National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital, Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340674).

Fisher, W. P., Jr. (2010). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics Conference Series, 238(1), 012016.

Fisher, W. P., Jr. (2011). Bringing human, social, and natural capital to life: Practical consequences and opportunities. Journal of Applied Measurement, 12(1), 49-66.

Fisher, W. P., Jr. (2011). Stochastic and historical resonances of the unit in physics and psychometrics. Measurement: Interdisciplinary Research & Perspectives, 9, 46-50.

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012, May/June). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2015). A probabilistic model of the law of supply and demand. Rasch Measurement Transactions, 29(1), 1508-1511  [http://www.rasch.org/rmt/rmt291.pdf].

Fisher, W. P., Jr. (2018). How beauty teaches us to understand meaning. Educational Philosophy and Theory, in review.

Fisher, W. P., Jr. (2018). A nondualist social ethic: Fusing subject and object horizons in measurement. TMQ–Techniques, Methodologies, and Quality, in review.

Fisher, W. P., Jr., Oon, E. P.-T., & Benson, S. (2018). Applying Design Thinking to systemic problems in educational assessment information management. Journal of Physics Conference Series, 1044, 012012.

Fisher, W. P., Jr., Oon, E. P.-T., & Benson, S. (2018). Rethinking the role of educational assessment in classroom communities: How can design thinking address the problems of coherence and complexity? Measurement, in review.

Fisher, W. P., Jr., & Stenner, A. J. (2013). On the potential for improved measurement in the human and social sciences. In Q. Zhang & H. Yang (Eds.), Pacific Rim Objective Measurement Symposium 2012 Conference Proceedings (pp. 1-11). Berlin, Germany: Springer-Verlag.

Fisher, W. P., Jr., & Stenner, A. J. (2016). Theory-based metrological traceability in education: A reading measurement network. Measurement, 92, 489-496.

Fisher, W. P., Jr., & Stenner, A. J. (2018). Ecologizing vs modernizing in measurement and metrology. Journal of Physics Conference Series, 1044, 012025.

Gadamer, H.-G. (1980). Dialogue and dialectic: Eight hermeneutical studies on Plato (P. C. Smith, Trans.). New Haven: Yale University Press.

Gari, S. R., Newton, A., Icely, J. D., & Delgado-Serrano, M. D. M. (2017). An analysis of the global applicability of Ostrom’s design principles to diagnose the functionality of common-pool resource institutions. Sustainability, 9(7), 1287.

Gelven, M. (1984). Eros and projection: Plato and Heidegger. In R. W. Shahan & J. N. Mohanty (Eds.), Thinking about Being: Aspects of Heidegger’s thought (pp. 125-136). Norman, Oklahoma: Oklahoma University Press.

Hamilton, A. (. (1788, 1 January). Concerning the general power of taxation (continued). The New York Packet. (Rpt. in J. E. Cooke, (Ed.). (1961). The Federalist (Hamilton, Alexander; Madison, James; Jay, John). (pp. No. 31, 193-198). Middletown, Conn: Wesleyan University Press.

Lunz, M. E., Bergstrom, B. A., & Gershon, R. C. (1994). Computer adaptive testing. International Journal of Educational Research, 21(6), 623-634.

Ostrom, E. (2015). Governing the commons: The evolution of institutions for collective action. Cambridge, UK: Cambridge University Press (Original work published 1990).

Pendrill, L., & Fisher, W. P., Jr. (2015). Counting and quantification: Comparing psychometric and metrological perspectives on visual perceptions of number. Measurement, 71, 46-55.

Penuel, W. R. (2015, 22 September). Infrastructuring as a practice for promoting transformation and equity in design-based implementation research. In Keynote. International Society for Design and Development in Education (ISDDE) 2015 Conference, Boulder, CO. Retrieved from http://learndbir.org/resources/ISDDE-Keynote-091815.pdf

Platt, J. R. (1966). The step to man. New York: John Wiley & Sons.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Ricoeur, P. (1966). The project of a social ethic. In D. Stewart & J. Bien, (Eds.). (1974). Political and social essays (pp. 160-175). Athens, Ohio: Ohio University Press.

Ricoeur, P. (1970). Freud and philosophy: An essay on interpretation. Evanston, IL: Northwestern University Press.

Ricoeur, P. (1974). Violence and language. In D. Stewart & J. Bien (Eds.), Political and social essays by Paul Ricoeur (pp. 88-101). Athens, Ohio: Ohio University Press.

Ricoeur, P. (1977). The rule of metaphor: Multi-disciplinary studies of the creation of meaning in language (R. Czerny, Trans.). Toronto: University of Toronto Press.

Star, S. L., & Ruhleder, K. (1996, March). Steps toward an ecology of infrastructure: Design and access for large information spaces. Information Systems Research, 7(1), 111-134.

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Wright, B. D. (1958, 7). On behalf of a personal approach to learning. The Elementary School Journal, 58, 365-375. (Rpt. in M. Wilson & W. P. Fisher, Jr., (Eds.). (2017). Psychological and social measurement: The career and contributions of Benjamin D. Wright (pp. 221-232). New York: Springer Nature.)

Wright, B. D. (1999). Fundamental measurement for psychology. In S. E. Embretson & S. L. Hershberger (Eds.), The new rules of measurement: What every educator and psychologist should know (pp. 65-104 [http://www.rasch.org/memo64.htm]). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.