Archive for the ‘Resilience’ Category

Parameterizing Perfection: Practical Applications of a Mathematical Model of the Lean Ideal

April 2, 2010

To properly pursue perfection, we need to parameterize it. That is, taking perfection as the ideal, unattainable standard against which we judge our performance is equivalent to thinking of it as a mathematical model. Organizations are intended to realize their missions independent of the particular employees, customers, suppliers, challenges, products, etc. they happen to engage with at any particular time. Organizational performance measurement (Spitzer, 2007) ought to then be designed in terms of a model that posits, tests for, and capitalizes on the always imperfectly realized independence of those parameters.

Lean thinking (Womack & Jones, 1996) focuses on minimizing waste and maximizing value. At every point at which resources are invested in processes, services, or products, the question is asked, “What value is added here?” Resources are wasted when no value is added, when they can be removed with no detrimental effect on the value of the end product. In their book, Natural Capitalism: Creating the Next Industrial Revolution, Hawken, Lovins, and Lovins (1999, p. 133) say

“Lean thinking … changes the standard for measuring corporate success. … As they [Womack and Jones] express it: ‘Our earnest advice to lean firms today is simple. To hell with your competitors; compete against perfection by identifying all activities that are muda [the Japanese term for waste used in Toyota’s landmark quality programs] and eliminating them. This is an absolute rather than a relative standard which can provide the essential North Star for any organization.”

Further, every input should “be presumed waste until shown otherwise.” A constant, ongoing, persistent pressure for removing waste is the basic characteristic of lean thinking. Perfection is never achieved, but it aptly serves as the ideal against which progress is measured.

Lean thinking sounds a lot like a mathematical model, though it does not seem to have been written out in a mathematical form, or used as the basis for calibrating instruments, estimating measures, evaluating data quality, or for practical assessments of lean organizational performance. The closest anyone seems to have come to parameterizing perfection is in the work of Genichi Taguchi (Ealey, 1988), which has several close parallels with Rasch measurement (Linacre, 1993).  But meaningful and objective quantification, as required and achieved in the theory and practice of fundamental measurement (Andrich, 2004; Bezruczko, 2005; Bond & Fox 2007; Smith & Smith, 2004; Wilson, 2005; Wright, 1999), in fact asserts abstract ideals of perfection as models of organizational, social, and psychological processes in education, health care, marketing, etc. These models test the extent to which outcomes remain invariant across examination or survey questions, across teachers, students, schools, and curricula, or across treatment methods, business processes, or policies.

Though as yet implemented only to a limited extent in business (Drehmer, Belohlav, James, & Coye, 2000; Drehmer & Deklava, 2001;  Lunz & Linacre, 1998; Salzberger, 2009), advanced measurement’s potential rewards are great. Fundamental measurement theory has been successfully applied in research and practice thousands of times over the last 40 years and more, including in very large scale assessments and licensure/certification applications (Adams, Wu, & Macaskill, 1997; Masters, 2007; Smith, Julian, Lunz, et al., 1994). These successes speak to an opportunity for making broad improvements in outcome measurement that could provide more coherent product definition, and significant associated opportunities for improving product quality and the efficiency with which it is produced, in the manner that has followed from the use of fundamental measures in other industries.

Of course, processes and outcomes are never implemented or obtained with perfect consistency. This would be perfectly true only in a perfect world. But to pursue perfection, we need to parameterize it. In other words, to raise the bar in any area of performance assessment, we have to know not only what direction is up, but we also need to know when we have raised the bar far enough. But we cannot tell up from down, we do not know how much to raise the bar, and we cannot properly evaluate the effects of lean experiments when we have no way of locating measures on a number line that embodies the lean ideal.

To think together collectively in ways that lead to significant new innovations, to rise above what Jaron Lanier calls the “global mush” of confused and self-confirming hive thinking, we need the common languages of widely accepted fundamental measures of the relevant processes and outcomes, measures that remain constant across samples of customers, patients, employees, students, etc., and across products, sales techniques, curricula, treatment processes, assessment methods, and brands of instrument.

We are all well aware that the consequences of not knowing where the bar is, of not having product definitions, can be disastrous. In many respects, as I’ve said previously in this blog, the success or failure of health care reform hinges on getting measurement right. The Institute of Medicine report, To Err is Human, of several years ago stresses the fact that system failures pose the greatest threat to safety in health care because they lead to human errors. When a system as complex as health care lacks a standard product definition, and product delivery is fragmented across multiple providers with different amounts and kinds of information in different settings, the system becomes dangerously cumbersome and over-complicated, with unacceptably wide variations and errors in its processes and outcomes, not to even speak of its economic inefficiency.

In contrast with the widespread use of fundamental measures in the product definitions of other industries, health care researchers typically implement neither the longstanding, repeatedly proven, and mathematically rigorous models of fundamental measurement theory nor the metrological networks through which reference standard metrics are engineered. Most industries carefully define, isolate, and estimate the parameters of their products, doing so in ways 1) that ensure industry-wide comparability and standardization, and 2) that facilitate continuous product improvement by revealing multiple opportunities for enhancement. Where organizations in other industries manage by metrics and thereby keep their eyes on the ball of product quality, health care organizations often manage only their own internal processes and cannot in fact bring the product quality ball into view.

In his message concerning the Institute for Healthcare Improvement’s Pursuing Perfection project a few years ago, Don Berwick, like others (Coye, 2001; Coye & Detmer, 1998), observed that health care does not yet have an organization setting new standards in the way that Toyota did for the auto industry in the 1970s. It still doesn’t, of course. Given the differences between the auto and health care industries uses of fundamental measures of product quality and associated abilities to keep their eyes on the quality ball, is it any wonder then, that no one in health care has yet hit a home run? It may well be that no one will hit a home run in health care until reference standard measures of product quality are devised.

The need for reference standard measures in uniform data systems is crucial, and the methods for obtaining them are widely available and well-known. So what is preventing the health care industry from adopting and deploying them? Part of the answer is the cost of the initial investment required. In 1980, metrology comprised about six percent of the U.S. gross national product (Hunter, 1980). In the period from 1981 to 1994, annual expenditures on research and development in the U.S. were less than three percent of the GNP, and non-defense R&D was about two percent (NIST Subcommittee on Research, National Science and Technology Council, 1996). These costs, however, must be viewed as investments from which high rates of return can be obtained (Barber, 1987; Gallaher, Rowe, Rogozhin, et al., 2007; Swann, 2005).

For instance, the U.S. National Institute of Standards and Technology estimated the economic impact of 12 areas of research in metrology, in four broad areas including semiconductors, electrical calibration and testing, optical industries, and computer systems (NIST, 1996, Appendix C; also see NIST, 2003). The median rate of return in these 12 areas was 147 percent, and returns ranged from 41 to 428 percent. The report notes that these results compare favorably with those obtained in similar studies of return rates from other public and private research and development efforts. Even if health care metrology produces only a small fraction of the return rate produced in physical metrology, its economic impact could still amount to billions of dollars annually. The proposed pilot projects therefore focus on determining what an effective health care outcomes metrology system should look like. What should its primary functions be? What should it cost? What rates of return could be expected from it?

Metrology, the science of measurement (Pennella, 1997), requires 1) that instruments be calibrated within individual laboratories so as to isolate and estimate the values of the required parameters (Wernimont, 1978); and 2) that individual instruments’ capacities to provide the same measure for the same amount, and so be traceable to a reference standard, be established and monitored via interlaboratory round-robin trials (Mandel, 1978).

Fundamental measurement has already succeeded in demonstrating the viability of reference standard measures of health outcomes, measures whose meaningfulness does not depend on the particular samples of items employed or patients measured. Though this work succeeds as far as it goes, it being done in a context that lacks any sense of the need for metrological infrastructure. Health care needs networks of scientists and technicians collaborating not only in the first, intralaboratory phase of metrological work, but also in the interlaboratory trials through which different brands or configurations of instruments intended to measure the same variable would be tuned to harmoniously produce the same measure for the same amount.

Implementation of the two phases of metrological innovation in health care would then begin with the intralaboratory calibration of existing and new instruments for measuring overall organizational performance, quality of care, and patients’ health status, quality of life, functionality, etc.  The second phase takes up the interlaboratory equating of these instruments, and the concomitant deployment of reference standard units of measurement throughout a health care system and the industry as a whole. To answer questions concerning health care metrology’s potential returns on investment, the costs for, and the savings accrued from, accomplishing each phase of each pilot will be tracked or estimated.

When instruments measuring in universally uniform, meaningful units are put in the hands of clinicians, a new scientific revolution will occur in medicine. It will be analogous to previous ones associated with the introduction of the thermometer and the instruments of optometry and the clinical laboratory. Such tools will multiply many times over the quality improvement methods used by Brent James, touted as holding the key to health care reform in a recent New York Times profile. Instead of implicitly hypothesizing models of perfection and assessing performance relative to them informally, what we need is a new science that systematically implements the lean ideal on industry-wide scales. The future belongs to those who master these techniques.


Adams, R. J., Wu, M. L., & Macaskill, G. (1997). Scaling methodology and procedures for the mathematics and science scales. In M. O. Martin & D. L. Kelly (Eds.), Third International Mathematics and Science Study Technical Report: Vol. 2: Implementation and Analysis – Primary and Middle School Years (pp. 111-145). Chestnut Hill, MA: Boston College.

Andrich, D. (2004, January). Controversy and the Rasch model: A characteristic of incompatible paradigms? Medical Care, 42(1), I-7–I-16.

Barber, J. M. (1987). Economic rationale for government funding of work on measurement standards. In R. Dobbie, J. Darrell, K. Poulter & R. Hobbs (Eds.), Review of DTI work on measurement standards (p. Annex 5). London: Department of Trade and Industry.

Berwick, D. M., James, B., & Coye, M. J. (2003, January). Connections between quality measurement and improvement. Medical Care, 41(1 (Suppl)), I30-38.

Bezruczko, N. (Ed.). (2005). Rasch measurement in health sciences. Maple Grove, MN: JAM Press.

Bond, T., & Fox, C. (2007). Applying the Rasch model: Fundamental measurement in the human sciences, 2d edition. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Coye, M. J. (2001, November/December). No Toyotas in health care: Why medical care has not evolved to meet patients’ needs. Health Affairs, 20(6), 44-56.

Coye, M. J., & Detmer, D. E. (1998). Quality at a crossroads. The Milbank Quarterly, 76(4), 759-68.

Drehmer, D. E., Belohlav, J. A., & Coye, R. W. (2000, Dec). A exploration of employee participation using a scaling approach. Group & Organization Management, 25(4), 397-418.

Drehmer, D. E., & Deklava, S. M. (2001, April). A note on the evolution of software engineering practices. Journal of Systems and Software, 57(1), 1-7.

Ealey, L. A. (1988). Quality by design: Taguchi methods and U.S. industry. Dearborn MI: ASI Press.

Gallaher, M. P., Rowe, B. R., Rogozhin, A. V., Houghton, S. A., Davis, J. L., Lamvik, M. K., et al. (2007). Economic impact of measurement in the semiconductor industry (Tech. Rep. No. 07-2). Gaithersburg, MD: National Institute for Standards and Technology.

Hawken, P., Lovins, A., & Lovins, H. L. (1999). Natural capitalism: Creating the next industrial revolution. New York: Little, Brown, and Co.

Hunter, J. S. (1980, November). The national system of scientific measurement. Science, 210(21), 869-874.

Linacre, J. M. (1993). Quality by design: Taguchi and Rasch. Rasch Measurement Transactions, 7(2), 292.

Lunz, M. E., & Linacre, J. M. (1998). Measurement designs using multifacet Rasch modeling. In G. A. Marcoulides (Ed.), Modern methods for business research. Methodology for business and management (pp. 47-77). Mahwah, New Jersey: Lawrence Erlbaum Associates, Inc.

Mandel, J. (1978, December). Interlaboratory testing. ASTM Standardization News, 6, 11-12.

Masters, G. N. (2007). Special issue: Programme for International Student Assessment (PISA). Journal of Applied Measurement, 8(3), 235-335.

National Institute for Standards and Technology (NIST). (1996). Appendix C: Assessment examples. Economic impacts of research in metrology. In C. o. F. S. Subcommittee on Research (Ed.), Assessing fundamental science: A report from the Subcommittee on Research, Committee on Fundamental Science. Washington, DC: National Standards and Technology Council [; last accessed 18 February 2008].

National Institute for Standards and Technology (NIST). (2003, 15 January). Outputs and outcomes of NIST laboratory research. Retrieved 12 July 2009, from

Pennella, C. R. (1997). Managing the metrology system. Milwaukee, WI: ASQ Quality Press.\

Salzberger, T. (2009). Measurement in marketing research: An alternative framework. Northampton, MA: Edward Elgar.

Smith, R. M., Julian, E., Lunz, M., Stahl, J., Schulz, M., & Wright, B. D. (1994). Applications of conjoint measurement in admission and professional certification programs. International Journal of Educational Research, 21(6), 653-664.

Smith, E. V., Jr., & Smith, R. M. (2004). Introduction to Rasch measurement. Maple Grove, MN: JAM Press.

Spitzer, D. (2007). Transforming performance measurement: Rethinking the way we measure and drive organizational success. New York: AMACOM.

Swann, G. M. P. (2005, 2 December). John Barber’s pioneering work on the economics of measurement standards [Electronic version]. Retrieved from Notes for Workshop in Honor of John Barber held at University of Manchester.

Wernimont, G. (1978, December). Careful intralaboratory study must come first. ASTM Standardization News, 6, 11-12.

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Womack, J. P., & Jones, D. T. (1996, Sept./Oct.). Beyond Toyota: How to root out waste and pursue perfection. Harvard Business Review, 74, 140-58.

Wright, B. D. (1999). Fundamental measurement for psychology. In S. E. Embretson & S. L. Hershberger (Eds.), The new rules of measurement: What every educator and psychologist should know (pp. 65-104 []). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at
Permissions beyond the scope of this license may be available at

Assignment from Wired’s Predict What’s Next page: “Imagine the Future of Medical Bills”

March 20, 2010

William P. Fisher, Jr.
New Orleans, Louisiana
20 March 2010

Consider the following, formulated in response to Wired magazine’s 18.04 request for ideas on the future of medical bills, for possible use on the Predict What’s Next page. For background on the concepts presented here, see previous posts in this blog, such as

Visualize an online image of a Maiuetic Renaissance Bank’s Monthly Living Capital Stock, Investment, and Income Report. The report is shown projected as a vertical plane in the space above an old antique desk. Credits and debits to and from Mary Smith’s health capital account are listed, along with similar information on all of her capital accounts. Lying on the desk is a personalized MRB Living Capital Credit/Debit card, evidently somehow projecting the report from the eyes of Mary’s holographic image on it.

The report shows headings and entries for Mary Smith’s various capital accounts:

  • liquid (cash, checking and savings),
  • property (home, car, boat, rental, investments, etc.),
  • social capital (trust, honesty, commitment, loyalty, community building, etc.) credits/debits:
    • personal,
    • community’s,
    • employer’s,
    • regional,
    • national;
  • human capital:
    • literacy credits (shown in Lexiles;,
    • numeracy credits (shown in Quantiles;,
    • occupational credits (hireability, promotability, retainability, productivity),
    • health credits/debits (genetic, cognitive reasoning, physical function, emotional function, chronic disease management status, etc.); and
  • natural capital:
    • carbon credits/debits,
    • local and global air, water, ecological diversity, and environmental quality share values.

Example social capital credits/debits shown in the report might include volunteering to build houses in N’Awlins Ninth Ward, tutoring fifth-graders in math, jury duty, voting, writing letters to congress, or charitable donations (credits), on the one hand, or library fines, a parking ticket, unmaintained property, etc. (debits), on the other.

Natural capital credits might be increased or decreased depending on new efficiencies obtained in electrical grid or in power generation, a newly installed solar panel, or by a recent major industrial accident, environmental disaster, hurricane, etc.

Mary’s share of the current value of the overall Genuine National Product, or Happiness Index, is broken out by each major form of capital (liquid, property, social, human, natural).

The monetary values of credits are shown at the going market rates, alongside the changes from last month, last year, and three years ago.

One entry could be a deferred income and property tax amount, given a social capital investment level above a recommended minimum. Another entry would show new profit potentials expressed in proportions of investments wasted due to inefficiencies, with suggestions for how these can be reduced, and with time to investment recovery and amount of new social capital generated also indicated.

The health capital portion of the report is broken out in a magnified overlay. Mary’s physical and emotional function measures are shown by an arrow pointing at a level on a vertical ruler. Other arrows point at the average levels for people her age (globally, nationally, regionally, and locally), for women and women of different ages, living in different countries/cities, etc.

Mary’s diabetes-specific chronic disease management metric is shown at a high level, indicating her success in using diet and exercise to control her condition. Her life expectancy and lifetime earning potentials are shown, alongside comparable values for others.

Recent clinical visits for preventative diabetes and dental care would be shown as debits against one account and as an investment in her health capital account. The debits might be paid out of a sale of shares of stock from her quite high social or natural capital accounts, or from credits transferred from those to her checking account.

Cost of declining function in the next ten years, given typical aging patterns, shown as lower rates of new capital investment in her stock and lower ROIs.

Cost of maintaining or improving function, in terms of required investments of time and resources in exercise, equipment, etc. balanced against constant rate of new investments and ROI.

Also shown:

A footnote could read: Given your recent completion of post-baccalaureate courses in political economy and advanced living capital finance, your increased stocks of literacy, numeracy, and occupational capital qualify you for a promotion or new positions currently compensated at annual rates 17.7% higher than your current one. Watch for tweets and beams from new investors interested in your rising stock!

A warning box: We all pay when dead capital lies unleveragable in currencies expressed in ordinal or otherwise nonstandard metrics! Visit today to convert your unaccredited capital currencies into recognized value. (Not responsible for fraudulent misrepresentations of value should your credits prove incommensurable or counterfeit. Always check your vendor’s social capital valuations before investing in any stock offering. Go to for accredited capital metrics equating information, courses, texts, and consultants.)

Ad: Click here to put your occupational capital stock on the market now! Employers are bidding $$$, ¥¥¥ and €€€ on others at your valuation level!

Ad: You are only 110 Lexiles away from a literacy capital stock level on which others receive 23% higher investment returns! Enroll at now for your increased income tomorrow! (Past performance is not a guarantee of future results. Your returns may vary. Click here to see Bob’s current social capital valuations.)

Bottom line: Think global, act local! It is up to you to represent your shares in the global marketplace. Only you can demand the improvements you seek by shifting and/or intensifying your investments. Do so whenever you are dissatisfied with your own, your global and local business partners’, your community’s, your employer’s, your region’s, or your nation’s stock valuations.

For background on the concepts involved in this scenario, see:

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [].

Fisher, W. P., Jr. (2005). Daredevil barnstorming to the tipping point: New aspirations for the human sciences. Journal of Applied Measurement, 6(3), 173-9 [].

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-3 [].

Fisher, W. P., Jr. (2009, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement (Elsevier), 42(9), 1278-1287.

Fisher, W. P.. Jr. (2009). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (Tech. Rep. No. New Orleans:

Fisher, W. P., Jr. (2010). Bringing human, social, and natural capital to life: Practical consequences and opportunities. Journal of Applied Measurement, 11, in press [].

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at
Permissions beyond the scope of this license may be available at

Contrasting Network Communities: Transparent, Efficient, and Invested vs Not

November 30, 2009

Different networks and different communities have different amounts of social capital going for them. As was originally described by Putnam (1993), some networks are organized hierarchically in a command-and-control structure. The top layers here are the autocrats, nobility, or bosses who run the show. Rigid conformity is the name of the game to get by. Those in power can make or break anyone. Market transactions in this context are characterized by the thumb on the scale, the bribe, and the kickback. Everyone is watching out for themselves.

At the opposite extreme are horizontal networks characterized by altruism and a sense that doing what’s good for everyone will eventually come back around to be good for me. The ideal here is a republic in which the law rules and everyone has the same price of entry into the market.

What I’d like to focus on is what’s going on in these horizontal networks. What makes one a more tightly-knit community than another? The closeness people feel should not be oppressive or claustrophic or smothering. I’m thinking of community relations in which people feel safe, not just personally but creatively. How and when are diversity, dissent and innovation not just tolerated but celebrated? What makes it possible for a market in new ideas and new ways of doing things to take off?

And how does a community like this differ from another one that is just as horizontally structured but that does not give rise to anything at all creative?

The answers to all of these questions seem to me to hinge on the transparency, efficiency, and volume of investments in the relationships making up the networks. What kinds of investments? All kinds: emotional, social, intellectual, financial, spiritual, etc. Less transparent, inefficient, and low volume investments don’t have the thickness or complexity of the relationships that we can see through, that are well lubricated, and that are reinforced with frequent visits.

Putnam (1993, p. 183) has a very illuminating way of putting this: “The harmonies of a choral society illustrate how voluntary collaboration can create value that no individual, no matter how wealthy, no matter how wily, could produce alone.” Social capital is the coordination of thought and behavior that embodies trust, good will, and loyalty. Social capital is at play when an individual can rely on a thickly elaborated network of largely unknown others who provide clean water, nutritious food, effective public health practices (sanitation, restaurant inspections, and sewers), fire and police protection, a fair and just judiciary, electrical and information technology, affordably priced consumer goods, medical care, and who ensure the future by educating the next generation.

Life would be incredibly difficult if we could not trust others to obey traffic laws, or to do their jobs without taking unfair advantage of access to special knowledge (credit card numbers, cash, inside information), etc. But beyond that, we gain huge efficiencies in our lives because of the way our thoughts and behaviors are harmonized and coordinated on mass scales. We just simply do not have to worry about millions of things that are being taken care of, things that would completely freeze us in our tracks if they weren’t being done.

Thus, later on the same page, Putnam also observes that, “For political stability, for government effectiveness, and even for economic progress social capital may be even more important than physical or human capital.” And so, he says, “Where norms and networks of civic engagement are lacking, the outlook for collective action appears bleak.”

But what if two communities have identical norms and networks, but they differ in one crucial way: one relies on everyday language, used in conversations and written messages, to get things done, and the other has a new language, one with a heightened capacity for transparent meaningfulness and precision efficiency? Which one is likely to be more creative and innovative?

The question can be re-expressed in terms of Gladwell’s (2000) sense of the factors contributing to reaching a tipping point: the mavens, connectors, salespeople, and the stickiness of the messages. What if the mavens in two communities are equally knowledgeable, the connectors just as interconnected, and the salespeople just as persuasive, but messages are dramatically less sticky in one community than the other? In one network of networks, saying things once gets the right response 99% of the time, but in the other things have to be repeated seven times before the right response comes back even 50% of the time, and hardly anyone makes the effort to repeat things that many times. Guess which community will be safer, more creative, and thriving?

All of this, of course, is just another way to bring out the importance of improved measurement for improving network quality and community life. As Surowiecki put it in The Wisdom of Crowds, the SARS virus was sequenced in a matter of weeks by a network of labs sharing common technical standards; without those standards, it would have taken any one of them weeks to do the same job alone. The messages these labs sent back and forth had an elevated stickiness index because they were more transparently and efficiently codified than messages were back in the days before the technical standards were created.

So the question emerges, given the means to create common languages with enhanced stickiness properties, such as we have in advanced measurement models, what kinds of creativity and innovation can we expect when these languages are introduced in the domains of human, social, and natural capital markets? That is the question of the age, it seems to me…

Gladwell, M. (2000). The tipping point: How little things can make a big difference. Boston: Little, Brown, and Company.

Putnam, R. D. (1993). Making democracy work: Civic traditions in modern Italy. Princeton, New Jersey: Princeton University Press.

Surowiecki, J. (2004). The wisdom of crowds: Why the many are smarter than the few and how collective wisdom shapes business, economies, societies and nations. New York: Doubleday.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at
Permissions beyond the scope of this license may be available at