Posts Tagged ‘self-sustaining sustainability’

Making sustainability impacts universally identifiable, individually owned, efficiently exchanged, and profitable

February 2, 2019

Sustainability impacts plainly and obviously lack common product definitions, objective measures, efficient markets, and associated capacities for competing on improved quality. The absence of these landmarks in the domain of sustainability interests is a result of inattention and cultural biases far more than it is a result of the inherent characteristics or nature of sustainability itself. Given the economic importance of these kinds of capacities and the urgent need for new innovations supporting sustainable development, it is curious how even those most stridently advocating new ways of thinking seem to systematically ignore well-established opportunities for advancing their cause. The wealth of historical examples of rapidly emerging, transformative, disruptive, and highly profitable innovations would seem to motivate massive interest in how extend those successes in new directions.

Economists have long noted how common currencies reduce transaction costs, support property rights, and promote market efficiencies (for references and more information, see previous entries in this blog over the last ten years and more). Language itself is well known for functioning as an economical labor-saving device in the way that useful concepts representing things in the world as words need not be re-invented by everyone for themselves, but can simply be copied. In the same ways that common languages ease communication, and common currencies facilitate trade, so, too, do standards for common product definitions contribute to the creation of markets.

Metrologically traceable measurements make it possible for everyone everywhere to know how much of something in particular there is. This is important, first of all, because things have to be identifiable in shared ways if we are to be able to include them in our lives, socially. Anyone interested in obtaining or producing that kind of thing has to be able to know it and share information about it as something in particular. Common languages capable of communicating specifically what a thing is, and how much of it there is, support claims to ownership and to the fruits of investments in entrepreneurial innovations.

Technologies for precision measurement key to these communications are one of the primary products of science. Instruments measuring in SI units embody common currencies for the exchange of scientific capital. The calibration and distribution of such instruments in the domain of sustainability impact investing and innovation ought to be a top-level priority. How else will sustainable impacts be made universally identifiable, individually owned, efficiently exchanged, and profitable?

The electronics, computer, and telecommunications industries provide ample evidence of precision measurement’s role in reducing transaction costs, establishing common product definitions, and reaping huge profits. The music industry’s use of these technologies combines the science and economics of precision measurement with the artistic creativity of intensive improvisations constructed from instruments tuned to standardized scales that achieve wholly unique levels of individual innovation.

Much stands to be learned, and even more to be gained, in focusing sustainability development on ways in which we can harness the economic power of the profit motive by combining collective efforts with individual imaginations in the domains of human, social, and natural capital. Aligning financial, monetary wealth with the authentic wealth and genuine productivity of gains in human, community, and environmental value ought to be the defining mission of this generation. The time to act is now.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at
Permissions beyond the scope of this license may be available at


So you say knowledge wants to be free?

January 26, 2019

If knowledge wants to be free, why do we work so hard keeping it trapped in scores and ratings whose meanings change depending on which questions were asked and who answered them?

Why don’t we liberate knowledge from its many prisons by embodying it in measurement systems that mean the same thing (within the range of uncertainty) no matter which questions on a topic are asked and no matter who answers them?

We routinely share knowledge quickly and easily when it’s about time, length, temperature, energy, mass, etc. Methods, theories, models, and tools developed over the last 90+ years show how we could be doing the same thing for literacy, health, functionality, environmental management, and every other major area of concern in the UN Sustainability Development Goals.

There’s a lot of talk among sustainability advocates about how urgent the need is for transformative efforts, investments, and technologies. It seems to me that sense of urgency will never be more than empty talk as long as we go on willfully ignoring the fact that we hold the keys to the chains that bind us.


Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at
Permissions beyond the scope of this license may be available at

A Yet Simpler Take on Making Sustainability Self-Sustaining

September 1, 2018

The point of focusing on sustainability is to balance human interests with a long term view of life on earth. Depleting resources as though they will be always available plainly is no way to plan for a safe and pleasant future. But it seems to me something is missing in the way we approach sustainability. Every time I see any efforts aimed at rebalancing resource usage with a long term view of the Earth’s capacity to support us, what do I see? I see solutions that cost a lot, and people saying that the costs are the price we have to pay for the mistakes that have been made, and for a viable future. And so I also see a lot of procrastination, delays, and reluctance to commit to sustainable policies and practices.

Why? Because, first, there are a great many people who cannot afford to live in the world as it is, right now, simply bearing their existing day-to-day costs. Even in the richest countries, huge proportions of people live hand to mouth, or very nearly so. Second, it’s hard to detect and punish freeloaders. Many people, companies, and governments are willing to hold off committing to sustainability in the hope that some technological fix will come along and spare them avoidable costs.

So, my question is, and I do not say this at all in jest or with any sense of irony or sarcasm: how do we make sustainability fun and profitable? How can we make sustainability economically self-sustaining? How can we make sustainability into a growth industry?

My answer to those questions is, by improving the quality of information on sustainability impacts. What does that mean? Why should that have anything to do with making sustainability fun and profitable? What improving the quality of information on sustainability impacts means is measuring it well, using methods and models that have been used in research and practice for more than 90 years. What we need is a Human, Social, and Natural Capital Metric System. or an International System of Units for Human, Social, and Natural Capital.

As we all know from the existing SI (metric system) units, high quality information makes it much easier to communicate value. Easier communication means lower transaction costs, and lower transaction costs mean that it becomes very inexpensive to find out how much of a sustainability impact is available, and what quality it is. High quality information enables grassroots bottom up efforts coordinating the decisions and behaviors of everyone everywhere. Managers would be able to dramatically improve quality in domains of human, social, and environmental value the way they do now for manufactured value. And investors would be able to reward innovation in those areas in ways they currently cannot.

For instance, with high quality sustainability impact measures, you’d be able to buy shares of stock in a new global carbon reduction effort that realistically projects it is on track to reverse climate change back its 1980 status. If someone came out with a better carbon reduction product that would make it possible to get the job done faster or at lower cost, we would have the information we need to quickly shift the flow of resources to the better product.

Speaking to other components of the UN’s Sustainability Development Goals, maybe people need to wonder why they cannot go buy 250 units of additional literacy right now? Why can’t you get a good price on a specific amount of literacy gain for your ten-year-old child from a few minutes of competitive shopping? And while you’re at it, maybe you could catch a special sale on 470 units of improved physical functionality for your great aunt who just had a hip replacement. Oh, she doesn’t need it because she’s got herself listed in a health capital investment bond likely to pay a 6% return? Well, maybe you should sink some funds into one of those contracts!

To take up the SDG 16.1 issue, if efforts to reduce armed violence were measured with the same level of information quality as kilowatt hours, that form of social capital product would be available in market transactions just the same way manufactured capital products like electricity are now. Conversely, your personal efforts at reducing armed violence, or improving someone’s literacy, or helping your great aunt with gains in physical functionality—all of these are investments of your skills and abilities that will pay back cash value to you. And because having fun with the kids, and getting out for recreational activities, are healthful things to do, enjoyment also should pay dividends.

Maybe this focus on fun and profit in making sustainability economically self-sustaining might finally find some traction for efforts in this area. Sustainability commerce could be a way of talking about these issues that will speak to matters more directly and practically. We’ll see how that works out as I try it on people in the near future.


Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at
Permissions beyond the scope of this license may be available at


Self-Sustaining Sustainability, Once Again, Already

August 12, 2018

The urgent need for massive global implementations of sustainability policies and practices oddly and counterproductively has not yet led to systematic investments in state of the art sustainability metric standards. My personal mission is to contribute to meeting this need. Longstanding, proven resources in the art and science of precision instrumentation calibration and explanatory theory are available to address these problems. In the same way technical standards for measuring length, mass, volume, time, energy, light, etc. enable the coordination of science and commerce for manufactured capital and property, so, too, will a new class of standards for measuring human, social, and natural capital.

This new art and science contradicts common assumptions in three ways. First, contrary to popular opinion that measuring these things is impossible, over 90 years of research and practice support a growing consensus among weights and measures standards engineers (metrologists) and social and psychological measurement experts that relevant unit standards are viable, feasible, and desirable.

Common perceptions are contradicted in a second way in that measurement of this kind does not require reducing human individuality to homogenized uniform sameness. Instead of a mechanical metaphor of cogs in a machine, the relevant perspective is an organic or musical one. The goal is to ensure that local uniqueness and creative improvisations are freely expressed in a context informed by shared standards (like DNA, or a musical instrument tuning system).

The third way in which much of what we think we know is mistaken concerns how to motivate adoption of sustainability policies and practices. Many among us are fearful that neither the general population nor its leaders in government and business care enough about sustainability to focus on implementing solutions. But finding the will to act is not the issue. The problem is how to create environments in which new sustainable forms of life multiply and proliferate of their own accord. To do this, people need means for satisfying their own interests in life, liberty, and the pursuit of happiness. The goal, therefore, is to organize knowledge infrastructures capable of informing and channeling the power of individual self-interest. The only way mass scale self-sustaining sustainable economies will ever happen is by tapping the entrepreneurial energy of the profit motive, where profit is defined not just in financial terms but in the quality of life and health terms of authentic wealth and genuine productivity.

We manage what we measure. If we are to collectively, fluidly, efficiently, and innovatively manage the living value of our human, social, and natural capital, we need, first, high quality information expressed in shared languages communicating that value. Second, we need, to begin with, new scientific, legal, economic, financial, and governmental institutions establishing individual rights to ownership of that value, metric units expressing amounts of that value, conformity audits for ascertaining the accuracy and precision of those units, financial alignments of the real value measured with bankable dollar amounts, and investment markets to support entrepreneurial innovations in creating that value.

The end result of these efforts will be a capacity for all of humanity to pull together in common cause to create a sustainable future. We will each be able to maximize our own personal potential at the same time we contribute to the greater good. We will not only be able to fulfill the potential of our species as stewards of the earth, we will have fun doing it! For technical information resources, see below. PDFs are available on request, and can often be found freely available online.

Self-Sustaining Sustainability

Relevant Information Resources

William P. Fisher, Jr., Ph.D.

Barney, M., & Fisher, W. P., Jr. (2016). Adaptive measurement and assessment. Annual Review of Organizational Psychology and Organizational Behavior, 3, 469-490.

Fisher, W. P., Jr. (1997). Physical disability construct convergence across instruments: Towards a universal metric. Journal of Outcome Measurement, 1(2), 87-113.

Fisher, W. P., Jr. (1999). Foundations for health status metrology: The stability of MOS SF-36 PF-10 calibrations across samples. Journal of the Louisiana State Medical Society, 151(11), 566-578.

Fisher, W. P., Jr. (2000). Objectivity in psychosocial measurement: What, why, how. Journal of Outcome Measurement, 4(2), 527-563.

Fisher, W. P., Jr. (2002). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [].

Fisher, W. P., Jr. (2003). The mathematical metaphysics of measurement and metrology: Towards meaningful quantification in the human sciences. In A. Morales (Ed.), Renascent pragmatism: Studies in law and social science (pp. 118-153). Brookfield, VT: Ashgate Publishing Co.

Fisher, W. P., Jr. (2004). Meaning and method in the social sciences. Human Studies: A Journal for Philosophy & Social Sciences, 27(4), 429-454.

Fisher, W. P., Jr. (2007). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [].

Fisher, W. P., Jr. (2009, November 19). Draft legislation on development and adoption of an intangible assets metric system. Living Capital Metrics blog:

Fisher, W. P., Jr. (2009). Invariance and traceability for measures of human, social, and natural capital. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital ( Washington, DC: National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010, 22 November). Meaningfulness, measurement, value seeking, and the corporate objective function: An introduction to new possibilities., Sausalito, California.

Fisher, W. P., Jr. (2010). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital. Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (

Fisher, W. P., Jr. (2010). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics Conference Series, 238(1), 012016.

Fisher, W. P., Jr. (2011). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [].

Fisher, W. P., Jr. (2015). A probabilistic model of the law of supply and demand. Rasch Measurement Transactions, 29(1), 1508-1511 [].

Fisher, W. P., Jr. (2015). Rasch measurement as a basis for metrologically traceable standards. Rasch Measurement Transactions, 28(4), 1492-1493 [].

Fisher, W. P., Jr. (2015). Rasch metrology: How to expand measurement locally everywhere. Rasch Measurement Transactions, 29(2), 1521-1523.

Fisher, W. P., Jr. (2017, September). Metrology, psychometrics, and new horizons for innovation. 18th International Congress of Metrology, Paris, 10.1051/metrology/201709007.

Fisher, W. P., Jr. (2017). A practical approach to modeling complex adaptive flows in psychology and social science. Procedia Computer Science, 114, 165-174.

Fisher, W. P., Jr. (2018). How beauty teaches us to understand meaning. Educational Philosophy and Theory, in review.

Fisher, W. P., Jr. (2018). Separation theorems in econometrics and psychometrics: Rasch, Frisch, two Fishers, and implications for measurement. Scandinavian Economic History Review, in review.

Fisher, W. P., Jr., Harvey, R. F., & Kilgore, K. M. (1995). New developments in functional assessment: Probabilistic models for gold standards. NeuroRehabilitation, 5(1), 3-25.

Fisher, W. P., Jr., Harvey, R. F., Taylor, P., Kilgore, K. M., & Kelly, C. K. (1995). Rehabits: A common language of functional assessment. Archives of Physical Medicine and Rehabilitation, 76(2), 113-122.

Fisher, W. P., Jr., & Stenner, A. J. (2011, January). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series).National Science Foundation:

Fisher, W. P., Jr., & Stenner, A. J. (2011, August 31 to September 2). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium,, Jena, Germany.

Fisher, W. P., Jr., & Stenner, A. J. (2016). Theory-based metrological traceability in education: A reading measurement network. Measurement, 92, 489-496.

Fisher, W. P., Jr., & Wilson, M. (2015). Building a productive trading zone in educational assessment research and practice. Pensamiento Educativo: Revista de Investigacion Educacional Latinoamericana, 52(2), 55-78.

Pendrill, L., & Fisher, W. P., Jr. (2013). Quantifying human response: Linking metrological and psychometric characterisations of man as a measurement instrument. Journal of Physics Conference Series, 459, 012057.

Pendrill, L., & Fisher, W. P., Jr. (2015). Counting and quantification: Comparing psychometric and metrological perspectives on visual perceptions of number. Measurement, 71, 46-55.


Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at
Permissions beyond the scope of this license may be available at