Archive for April, 2019

Cartesian problems cannot be solved by Cartesian solutions, no matter where those solutions originate

April 13, 2019

Trying to persuade or educate individuals to change the way they think and act, by pointing to the facts or by making emotional or moral appeals, seems always and everywhere to be the default go-to solution for those interested in addressing social and environmental problems. I suppose that approach works to varying degrees for different issues, but behavior change never occurs on as massive a scale as when it is mediated by a technology that enables people to do something they value.

The meaning of McLuhan’s expression, “the medium is the message,” and the long history of the many ways in which technologies transform cultures, for better and for worse, all seem utterly lost and forgotten when it comes to efforts aimed at provoking culture change. The ongoing discourses of environmental and social justice inevitably always seem to come back to targeting individual decisions and behaviors as the only recourse for effecting change.

But history teaches us that, if we want to change our values, we have to figure out how to embed the new terms in virally communicable metaphors that enthrall imaginations and captivate people’s attention and interest. Cultures turn on shared meanings that make some behaviors more likely than others. Good metaphors (“love is a rose;” “God is love”) organize experience in ways that allow infinite creative variations on the theme while also lending just a bit of structure and predictability to how things play out. We need to root new metaphors embodying shared human values in information infrastructures that operationalize consensus standards as the common currencies in which those values circulate.

Though the ongoing culture wars seem to suggest wildly divergent values in play across communities, research in developmental psychology strongly indicates that these differences are not what they seem. No matter what their politics, people need to feel valued, to have stable identities, to be recognized as someone of worth, to have a place of dignity in a community, to be trusted, and to see that others enjoy all of these qualities as well. Experience shows that these conditions cannot be implemented by a simple decree or force of will. Broad general conditions have to be cultivated in ways that make the emergence of abundant social capital resources more likely.

A point of entry into thinking about how those conditions might be created is provided by a 2010 quote in the Miami Herald from Gus Speth, former Dean of the Yale School of Forestry and Environmental Studies (http://tinyurl.com/y7mqtzzn). Speth recounts his sense that scientific solutions to ecosystem and climate problems are insufficient because the actual causes of the problems are greed, selfishness, and apathy. So he appeals to religious leaders for help.

But Speth’s moral diagnosis is as misconceived and uninformed as his original scientific one. As has been the topic of multiple posts in this blog, many of today’s problems cannot be solved using the same kind of Cartesian dualist thinking that was used in creating those problems. Voluminous citations in those earlier posts tap a large literature in the philosophy, history, and social studies of science describing a diverse array of examples of nondualist ecosystem thinking and acting (for instance, see references below). These works show how technological media fuse, embody, distribute, and enact social, moral, aesthetic, economic, and scientific values in complex multilevel metasystems (systems of systems). Moral values of fairness, for instance, are embedded in the quantitative values of measurement technologies exported from laboratories into markets where they inform economic values in trade.

Our task is to learn from these examples so that we can develop and deploy new languages that resonate with new values in analogous ways across similarly diverse cultural domains. Beauty, meaning, and poetry have to be as important as logic, mathematics, and science. Readily available theory and evidence already show how all of these are playing their roles in the evolving cultural transformation.

And, fortunately for humanity as well as for the earth, the new nondualist noncartesian solutions will not and cannot be primarily an outcome of deliberate intentions and conscious willpower. On the contrary, these integrated problem-solution monads are living, organic, self-organizing embodiments of ideas that captivate imaginations and draw creative, entrepreneurial energies in productive directions.

Of course, this kind of thing has happened many times in the past, though it has not previously emerged as a result of the kind of cultivated orchestration occurring today. Williamson, North, Ostrom, Coase, and others describe the roles institutions have played in setting up the rules, roles, and responsibilities of efficient markets. Today, new institutions are arising in a context of reproducible scientific results supporting ownership of, investments in, and profits harvested from sustainable impacts measured and managed via virally communicable media spreading social contagions of love and care. This is coming about because we all seek and value meaning and beauty right along with the capacity to enjoy life, liberty, and prosperity. However differently we each define and experience meaning and beauty, caring for the unity and sameness of the objects of the conversations that we are enables us to balance harmonies and dissonances in endless variations performed by every imaginable kind of rhythmic and melodic musical ensemble.

So instead of expecting different results from repeated applications of the same dualistic thinking that got us into today’s problems, we need to think and act nondualistically. Instead of assuming that solutions do not themselves already presuppose and embody problems of a certain type, we need to think in terms of integrated problem-solution monads deployed throughout ecosystems like species in symbiotic relationships. This is precisely what’s happened historically with the oil-automobile-highway-plastics-engineering ecosystem, and with the germ-disease-pharmaceutical-public health-medicine ecosystem. In each case, financial, market, accounting, regulatory, legal, educational, and other institutions evolved in tandem with the emerging sociotechnical ecology.

Now we face urgent needs to think and act on previously unheard of scales and levels of complexity. We have to work together and coordinate efforts in social and psychological domains with no previous history of communications capable of functioning at the needed efficiencies.

But merely urging people to live differently will never result in the changes that must be brought about. No matter how compelling the facts, no matter how persuasive the emotional power, and no matter how inspirational the moral argument, individual people and small groups simply cannot create new shared standards of behavior out of thin air. We are all products of our times and our sociocultural environments. People cannot be expected to simply wake up one day and spontaneously transform their habits by an effort of will. Instead, the values of fairness, equity, inclusion, and justice we say we live by must be embedded within the very fabric of everyday life, the way hours, meters, liters, degrees, grams, and volts are now.

That is, measurements read off instruments calibrated in fair units of comparison—measurements mathematically equivalent to those made with the scales of justice, measurements expressed in the common metrics of a new international system of units, and measurements as adaptable to local individual improvisations as they are generally comparable and navigable—have to be built into every institution in just the same way existing units of measurement are. Education, health care, social services, human resource management, environmental solutions—all of these and more need to attend closely to ways in which the objects of conversation can be more systematically expressed in meaningful words. Ecosystem thinking demands that everyone and everything in a system of relationships must be consistently kept in proportionate contact, within ranges of reported uncertainty, instead of being disconnected off into separate incommensurable universes of discourse, as occurs in today’s institutions.

These are all monumentally huge challenges. But much of the hardest work has been underway for decades, with important results and resources spreading into widely used applications often taken for granted in the background of largely unexamined assumptions. These results are now well enough established, and the associated social and environmental problems are so serious, that more can and should be done to put them to use.

The need for new values is indeed urgent, but empty talk and doing more of the same is getting us nowhere, at best, and more often is worsening conditions. Conceptual determinations of reproducible mathematical values embodying people’s lived social and moral values in fungible economic values are not just theoretical possibilities or provisional experimental results. They are longstanding, widely available, and practical, as well as beautiful and meaningful. With attentive cultivation and nurturing, there are abundant reasons for believing in a safe, healthy, happy, and prosperous future for humanity and life on earth.

References

Akera, A. (2007). Constructing a representation for an ecology of knowledge. Social Studies of Science, 37(3), 413-441.

Barney, M., & Fisher, W. P., Jr. (2016, April). Adaptive measurement and assessment. Annual Review of Organizational Psychology and Organizational Behavior, 3, 469-490.

Blok, A., Nakazora, M., & Winthereik, B. R. (2016). Infrastructuring environments. Science as Culture, 25(1), 1-22.

Bowker, G. C. (2016). How knowledge infrastructures learn. In P. Harvey, C. B. Jensen & A. Morita (Eds.), Infrastructures and social complexity: A companion (pp. 391-403). New York: Routledge.

Bowker, G., Timmermans, S., Clarke, A. E., & Balka, E. (Eds). (2015). Boundary objects and beyond: Working with Leigh Star. Cambridge, MA: MIT Press.

Brain, R. (1998). Standards and semiotics. In T. Lenoir (Ed.), Inscribing science: Scientific texts and the materiality of communication (pp. 249-w84). Stanford, California: Stanford University Press.

Cano, S. J., & Hobart, J. C. (2011). The problem with health measurement. Patient Preference and Adherence, 5, 279-290.

Cano, S., Klassen, A. F., & Pusic, A. L. (2009). The science behind quality-of-life measurement: A primer for plastic surgeons. Plastic and Reconstructive Surgery, 123(3), 98e-106e.

Cano, S., Melin, J., Fisher, W. P., Jr., Stenner, A. J., Pendrill, L., & EMPIR NeuroMet 15HLT04 Consortium. (2018). Patient-centred cognition metrology. Journal of Physics: Conference Series, 1065, 072033.

Cano, S., Pendrill, L., Barbic, S., & Fisher, W. P., Jr. (2018). Patient-centred outcome metrology for healthcare decision-making. Journal of Physics: Conference Series, 1044, 012057.

Cano, S., Pendrill, L., Melin, J., & Fisher, W. P., Jr. (2019). Towards consensus measurement standards for patient-centered outcomes. Measurement, in press.

Dawson, T. L. (2002, Summer). A comparison of three developmental stage scoring systems. Journal of Applied Measurement, 3(2), 146-89.

Dawson, T. L. (2002, March). New tools, new insights: Kohlberg’s moral reasoning stages revisited. International Journal of Behavioral Development, 26(2), 154-66.

Dawson, T. L. (2004, April). Assessing intellectual development: Three approaches, one sequence. Journal of Adult Development, 11(2), 71-85.

Dawson, T. L., & Stein, Z. (2011). We are all learning here: Cycles of research and application in adult development. In C. Hoare (Ed.), The Oxford handbook of reciprocal adult development and learning, 2nd Ed. (pp. 447-460). Oxford, England: Oxford University Press.

Fisher, W. P., Jr. (2009, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement: Concerning Foundational Concepts of Measurement Special Issue Section, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009). NIST Critical national need idea White Paper: Metrological infrastructure for human, social, and natural capital (http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC:. National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010, November 22). The birds and the bees of living meaning. LivingCapitalMetrics blog. https://livingcapitalmetrics.wordpress.com/2010/11/22/the-birds-and-the-bees-of-living-meaning/.

Fisher, W. P., Jr. (2010). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital, Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340674).

Fisher, W. P., Jr. (2011). Metaphor as measurement, and vice versa: Convergence and separation of figure and meaning in a Mawri proverb [Modified version of a paper presented to the African Studies Association, 1996]. Social Science Research Network. http://ssrn.com/abstract=1747967

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012, June 1). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2013). Imagining education tailored to assessment as, for, and of learning: Theory, standards, and quality improvement. Assessment and Learning, 2, 6-22.

Fisher, W. P., Jr. (2014). The central theoretical problem of the social sciences. Rasch Measurement Transactions, 28(2), 1464-1466. http://www.rasch.org/rmt/rmt282.pdf

Fisher, W. P., Jr. (2017, September). Metrology, psychometrics, and new horizons for innovation. 18th International Congress of Metrology, Paris, 09007 [https://cfmetrologie.edpsciences.org/articles/metrology/pdf/2017/01/metrology_metr2017_09007.pdf].

Fisher, W. P., Jr. (2017). A practical approach to modeling complex adaptive flows in psychology and social science. Procedia Computer Science, 114, 165-174. https://doi.org/10.1016/j.procs.2017.09.027

Fisher, W. P., Jr. (2019). How beauty teaches us to understand meaning, in revision.

Fisher, W. P., Jr. (2019). A nondualist social ethic: Fusing subject and object horizons in measurement. TMQ–Techniques, Methodologies, and Quality, in press.

Fisher, W. P., Jr., & Cavanagh, R. (2016). Measurement as a medium for communication and social action, I & II. In Q. Zhang & H. H. Yang (Eds.), Pacific Rim Objective Measurement Symposium (PROMS) 2015 Conference Proceedings (pp. 153-182). Berlin: Springer-Verlag.

Fisher, W. P., Jr., & Oon, E. P.-T. (2019). Information coherence and complexity across contexts: Negotiating discontinuities in educational assessment infrastructures. Information Systems Research, in review.

Fisher, W. P., Jr., Oon, E. P.-T., & Benson, S. (2018). Applying Design Thinking to systemic problems in educational assessment information management. Journal of Physics Conference Series, 1044, 012012 [http://iopscience.iop.org/article/10.1088/1742-6596/1044/1/012012].

Fisher, W. P., Jr., Oon, E. P.-T., & Benson, S. (2019). Rethinking the role of educational assessment in classroom communities: How can design thinking address the problems of coherence and complexity? Measurement, in review.

Fisher, W. P., Jr., & Stenner, A. J. (2011, January 1). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series). http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36

Fisher, W. P., Jr., & Stenner, A. J. (2013). On the potential for improved measurement in the human and social sciences. In Q. Zhang & H. Yang (Eds.), Pacific Rim Objective Measurement Symposium 2012 Conference Proceedings (pp. 1-11). Berlin, Germany: Springer-Verlag.

Fisher, W. P., Jr., & Stenner, A. J. (2016). Theory-based metrological traceability in education: A reading measurement network. Measurement, 92, 489-496.

Fisher, W. P., Jr., & Stenner, A. J. (2018). Ecologizing vs modernizing in measurement and metrology. Journal of Physics Conference Series, 1044, 012025.

Fisher, W. P., Jr., & Stenner, A. J. (2017, September 18). Towards an alignment of engineering and psychometric approaches to uncertainty in measurement: Consequences for the future. 18th International Congress of Metrology, 12004, 1-9. https://doi.org/10.1051/metrology/201712004

Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.

Golinski, J. (2012). Is it time to forget science? Reflections on singular science and its history. Osiris, 27(1), 19-36.

Hutchins, E. (2014). The cultural ecosystem of human cognition. Philosophical Psychology, 27(1), 34-49.

Jasanoff, S. (2005). Designs on nature: Science and democracy in Europe and the United States. Princeton, NJ: Princeton University Press.

Jasanoff, S. (2015). Future imperfect: Science, technology, and the imaginations of modernity. In S. Jasanoff & S.-H. Kim (Eds.), Dreamscapes of modernity: Sociotechnical imaginaries and the fabrication of power (pp. 1-22). Chicago: University of Chicago Press.

Jasanoff, S., & Martello, M. L. (Eds.) (2004). Earthly politics: Local and global in environmental governance. (Politics, Science, and the Environment). Cambridge, MA: MIT Press.

Kjellberg, H., & Helgesson, C.-F. (2006). Multiple versions of markets: Multiplicity and performativity in marketing practice. Industrial Marketing Management, 35, 839-855.

Lampland, M., & Star, S. L. (Eds.). (2008). Standards and their stories: How quantifying, classifying, and formalizing practices shape everyday life. Ithaca, NY: Cornell University Press.

Latour, B. (1990). Postmodern? No, simply amodern: Steps towards an anthropology of science. Studies in History and Philosophy of Science, 21(1), 145-171.

Latour, B. (1991). The impact of science studies on political philosophy. Science, Technology, & Human Values, 16(1), 3-19.

Latour, B. (1993). We have never been modern. Cambridge, Massachusetts: Harvard University Press.

Latour, B. (1998). To modernise or ecologise? That is the question. In B. Braun & N. Castree (Eds.), Remaking reality: Nature at the millennium (pp. 221-242). London: Routledge.

Latour, B. (2005). Reassembling the social: An introduction to Actor-Network-Theory. (Clarendon Lectures in Management Studies). Oxford, England: Oxford University Press.

Latour, B. (2009). On the modern cult of the factish gods (H. MacLean & C. Porter, Trans.). Durham, NC: Duke University Press.

Latour, B. (2010). Tarde’s idea of quantification. In M. Candea (Ed.), The social after Gabriel Tarde: Debates and assessments (pp. 145-162). London: Routledge.

Latour, B. (2011). Love your monsters: Why we must care for our technologies as we do our children. Breakthrough Journal, 2, 21-28. http://thebreakthrough.org/index.php/journal/past-issues/issue-2/love-your-monsters

Latour, B. (2014, February 26). On some of the affects of capitalism. Lecture given at the Royal Academy, Copenhagen, Denmark. Retrieved from http://www.bruno-latour.fr/sites/default/files/136-AFFECTS-OF-K-COPENHAGUE.pdf.

Latour, B., & Callon, M. (2011). “Thou shall not calculate!” or how to symmetricalize gift and capital. Revista De Pensamiento e Investifation Social, 11(1), 171-192.

Latour, B., & Lépinay, V. A. (2010). The science of passionate interests: An introduction to Gabriel Tarde’s economic anthropology. Chicago: Prickly Paradigm Press.

Lenoir, T. (Ed.). (1997). Instituting science: The cultural production of scientific disciplines (T. Lenoir & H. U. Gumbrecht, Eds.). Writing Science. Stanford, CA: Stanford University Press.

Lenoir, T. (1998). Inscribing science: Scientific texts and the materiality of communication. Stanford, California: Stanford University Press.

Li, E. Y., Commons, M. L., Miller, J. G., Robbinet, T. L., Marchand, H., Ost, C. M. et al. (2014, September). Relationship among measures within the social and moral development domain. Behavioral Development Bulletin, 19(3), 106-113.

Nersessian, N. J. (2012). Engineering concepts: The interplay between concept formation and modeling practices in bioengineering sciences. Mind, Culture, and Activity, 19, 222-239.

Nersessian, N. J. (2015). Conceptual innovation on the frontiers of science. In E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in the study of concepts (pp. 455-474). Cambridge, MA: MIT Press.

Nespor, J. (2011). Devices and educational change. Educational Philosophy and Theory, 43(S1).

Overton, W. F. (2015). Processes, relations and Relational-Developmental-Systems. In W. F. Overton & P. C. M. Molenaar (Eds.), Theory and Method. Volume 1 of the Handbook of child psychology and developmental science (7th Ed.) (pp. 9-62). Hoboken, NJ: Wiley.

Schaffer, S. (1992). Late Victorian metrology and its instrumentation: A manufactory of Ohms. In R. Bud & S. E. Cozzens (Eds.), Invisible connections: Instruments, institutions, and science (pp. 23-56). Bellingham, WA: SPIE Optical Engineering Press.

Schaffer, S. (1997). Metrology, metrication, and Victorian values. In B. Lightman (Ed.), Victorian science in context (pp. 438-474). Chicago: University of Chicago Press.

Shapin, S. (1994). A social history of truth: Civility and science in seventeenth-century England. Chicago, Illinois: University of Chicago Press.

Shapin, S., & Schaffer, S. (1985). Leviathan and the air-pump: Hobbes, Boyle, and the experimental life. Princeton, NJ: Princeton University Press.

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.