Archive for the ‘impact investing’ Category

Why economic growth can and inevitably will be green

October 1, 2018

So, approaching matters once again from yet another point of view, we have Jason Hickel explaining a couple of weeks ago “Why Growth Can’t Be Green.” This article provides yet another example of how the problem is the problem. That is, the way we define problems sets up particular kinds of solutions in advance, and sometimes, as Einstein famously pointed out, problems cannot be solved from within the same conceptual framework that gave rise to them. I’ve expanded on this theme in a number of previous posts, for instance, here.

Hickel takes up the apparent impossibility of aligning economic growth with environmental values. He speaks directly to what he calls the rebound effect, the way that “improvements in resource efficiency drive down prices and cause demand to rise—thus canceling out some of the gains.” But that rebound can happen only as long as the economy remains defined and limited by the alignment of manufactured capital and finance, ignoring the largely unexamined and unconsidered possibility that human, social, and natural capital could be measured well enough to be also aligned with finance.

Hence, as I say, the problem is the problem. Broadening one’s conceptualization of the problem opens up new opportunities that otherwise never come into view.

The Hickel article’s entire focus is then on top-down policy impositions like taxes or a Genuine Progress Index. These presume human, social, and natural capital can only ever exist in dead formations that have to be micromanaged and concretely manipulated, and that efficient markets bringing them to life are inherently and literally unthinkable. (See a short article here for an explanation of the difference between dead and living capital. There’s a lot more where that came from, as is apparent in the previous posts here in this blog.)

The situation could be vastly different than what Hickel imagines. If we could own, buy, and sell products in efficient markets we could reward the production of human, social, and environmental value. In that scenario, when improvements in environmental resource efficiency are obtained, demand for that new environmental value will rise and its price will go down, not the resource’s price.

We ought to be creative enough to figure out how to configure markets so that prices for environmental resources (oil, farmland, metals, etc.) can stay constant or fall without increasing demand for them, as could happen if that demand is counterbalanced and absorbed by rising human, social, and environmental quality capital values.

The question is how to absorb the rebound effect in other forms of capital that grow in demand while holding demand for the natural resource base in check. The vital conceptual distinction is between socialistic centralized planning and control of actual physical entities (people, communities, the environment, and manufactured items), on the one hand, and capitalistic decentralized distributed network effects on abstract transferable representations, on the other. Everyone defaults to the socialist scenario without ever considering there might be a whole other arena in which fruitful possibilities might be imagined.

What if, for instance, we could harness the profit motive to promote growth in genuine human, social, and environmental value? What if we were able to achieve qualitatively meaningful increases in authentic wealth that were economically contingent on reduced natural resource consumption? What if the financial and substantive value profits that could be had meant that resource consumption could be reduced by the same kinds of factors as have been realized in the context of Moore’s Law? What if a human economics of genuine value could actually result in humanity being able to adjust the global thermostat up or down in small increments by efficiently rewarding just the right combinations of policies and practices at the right times and places in the right volumes?

The only way that could ever happen is if people are motivated to do the right thing for the earth and for humanity because it is the right thing for them and their families. They have to be able to own their personal shares of their personal stocks of human, social, and natural capital. They have to be able to profit from investments in their own and others’ shares. They will not act on behalf of the earth and humanity only because it is the right thing to do. There has to be evidence and explanations of how everyone is fairly held accountable to the same standards, and has the same opportunities for profit and loss as anyone else. Then, and only then, it seems, will human, social, and environmental value become communicable in a viral contagion of good will.

Socialism has been conclusively proven unworkable, for people, communities, and the environment, as well as financially. But a human, social, and natural capitalism has hardly even been articulated, much less tried out. How do we make human, social, and natural capital fungible? How might the economy transcend its traditional boundaries and expand itself beyond the existing alignment of manufactured capital and finance?

It’s an incredibly complex proposal, but also seems like such a simple thing. The manufactured capital economy uses the common language of good measurement to improve quality, to simplify management communications, and to lower transaction costs in efficient markets. So what should we do if we want to correct the imbalanced negative impacts on people, communities, and the environment created by the misplaced emphasis on aligning only manufactured capital and financial capital?

As has been repeatedly proposed for years in this blog, maybe we should use the manufactured capital markets as a model and use good measurement to improve the quality of human, social, and environmental capital, to simplify communications and management, to lower transaction costs, and to align the genuine human, social, and environmental value created with financial value in efficient markets.

Of course, grasping that as viable, feasible, and desirable requires understanding that substantively meaningful precision measurement is something quite different from what usually passes for quantification. And that is an entirely different story, though one taken up repeatedly in previous entries in this blog, of course….

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

 

Advertisements

New Ideas on How to Realize the Purpose of Capital

September 20, 2018

I’d like to offer the following in reply to James Militzer, at https://nextbillion.net/deciphering-emersons-tears-time-impact-investing-lower-expectations/.

Rapid advances toward impact investing’s highest goals of social transformation are underway in quiet technical work being done in places no one is looking. That work shares Jed Emerson’s sentiments expressed at the 2017 Social Capital Markets conference, as he is quoted in Militzer’s NextBillion.net posting, that “The purpose of capital is to advance a more progressively free and just experience of life for all.” And he is correct in what Militzer reported he said the year before, that we need a “real, profound critique of current practices within financial capitalism,” one that would “require real change in our own behavior aside from adding a few funds to our portfolios here or augmenting a reporting process there.”

But the efforts he and others are making toward fulfilling that purpose and articulating that critique are incomplete, insufficient, and inadequate. Why? How? Language is the crux of the matter, and the issues involved are complex and technical. The challenge, which may initially seem simplistic or naive, is how to bring human, social, and environmental values into words. Not just any words, but meaningful words in a common language. What is most challenging is that this language, like any everyday language, has to span the range from abstract theoretical ideals to concrete local improvisations.

That means it cannot be like our current languages for expressing human, social, and environmental value. If we are going to succeed in aligning those forms of value with financial value, we have a lot of work to do.

Though there is endless talk of metrics for managing sustainable impacts, and though the importance of these metrics for making sustainability manageable is also a topic of infinite discussion, almost no one takes the trouble to seek out and implement the state of the art in measurement science. This is a crucial way, perhaps the most essential way, in which we need to criticize current practices within financial capitalism and change our behaviors. Oddly, almost no one seems to have thought of that.

That is, one of the most universally unexamined assumptions of our culture is that numbers automatically stand for quantities. People who analyze numeric data are called quants, and all numeric data analysis is referred to as quantitative. That is the case, but almost none of these quants and quantitative methods involve actually defining, modeling, identifying, evaluating, or applying an substantive unit of something real in the world that can be meaningfully represented by numbers.

There is, of course, an extensive and longstanding literature on exactly this science of measurement. It has been a topic of research, philosophy, and practical applications for at least 90 years, going back to the work of Thurstone at the University of Chicago in the 1920s. That work continued at the University of Chicago with Rasch’s visit there in 1960, with Wright’s adoption and expansion of Rasch’s theory and methods, and with the further work done by Wright’s students and colleagues in the years since.

Most importantly, over the last ten years, metrologists, the physicists and engineers who maintain and improve the SI units, the metric system, have taken note of what’s been going on in research and practice involving the approaches to measurement developed by Rasch, Wright, and their students and colleagues (for just two of many articles in this area, see here and here). The most recent developments in this new metrology include

(a) initiatives at national metrology institutes globally (Sweden and the UK, Portugal, Ukraine, among others) to investigate potentials for a new class of unit standards;

(b) a special session on this topic at the International Measurement Confederation (IMEKO) World Congress in Belfast on 5 September 2018;

(c) the Journal of Physics Conference Series proceedings of the 2016 IMEKO Joint Symposium hosted by Mark Wilson and myself at UC Berkeley;

(d) the publication of a 2017 book on Ben Wright edited by Mark Wilson and myself in Springer’s Series on Measurement Science and Technology; and

(e) the forthcoming October 2018 special issue of Elsevier’s Measurement journal edited by Wilson and myself, and a second one currently in development.

There are profound differences between today’s assumptions about measurement and how a meaningful art and science of precision measurement proceeds. What passes for measurement in today’s sustainability economics and accounting are counts, percentages, and ratings. These merely numeric metrics do not stand for anything that adds up the way they do. In fact, it’s been repeatedly demonstrated over many years that these kinds of metrics measure in a unit that changes size depending on who or what is measured, who is measuring, and what tool is used to measure. What makes matters even worse is that the numbers are usually taken to be perfectly precise, as uncertainty ranges, error terms, and confidence intervals are only sporadically provided and are usually omitted.

Measurement is not primarily a matter of data analysis. Measurement requires calibrated instruments that can be read as standing for a given amount of something that stays the same, within the uncertainty range, no matter who is measuring, no matter what or who is measured, and no matter what tool is used. This is, of course, quite an accomplishment when it can be achieved, but it is not impossible and has been put to use in large scale practical ways for several decades (for instance, see here, here, and here). Universally accessible instruments calibrated to common unit standards are what make society in general, and markets in particular, efficient in the way of projecting distributed network effects, turning communities into massively parallel stochastic computers (as W. Brian Arthur put it on p. 6 of his 2014 book, Complexity Economics).

These are not unexamined assumptions or overly ideal theoretical demands. They are pragmatic ways of adapting to emergent patterns in various kinds of data that have repeatedly been showing themselves around the world for decades. Our task is to literally capitalize on these nonhuman forms of life by creating multilevel, complex ecosystems of relationships with them, letting them be what they are in ways that also let us represent ourselves to each other. (Emerson quotes Bruno Latour to this effect on page 136 in his new book, The Purpose of Capital; those familiar with my work will know I’ve been reading and citing Latour since the early 1980s).

So it seems to me that, however well-intentioned those promoting impact investing may be, there is little awareness of just how profound and sweeping the critique of current practices needs to be, or of just how much our own behaviors are going to have to change. There are, however, truly significant reasons to be optimistic and hopeful. The technical work being done in measurement and metrology points toward possibilities for extending everyday language into a pragmatic idealism that does not require caving in to either varying local circumstances or to authoritarian dictates.

The upside of the situation is that, as so often happens in the course of human history, this critique and the associated changes are likely to have that peculiar quality captured in the French expression, “plus ça change, plus c’est la même chose” (the more things change, the more they stay the same). The changes in process are transformative, but will also be recognizable repetitions of human scale patterns.

In sum, what we are doing is tuning the instruments of the human, social, and environmental sciences to better harmonize relationships. Just as jazz, folk, and world music show that creative improvisation is not constrained by–but is facilitated by–tuning standards and high tech solutions, so, too, can we make that the case in other areas.

For instance, in my presentation at the IMEKO World Congress in Belfast on 5 September, I showed that the integration of beauty and meaning we have within our grasp reiterates principles that date back to Plato. The aesthetics complement the mathematics, with variations on the same equations being traceable from the Pythagorean theorem to Newton’s laws to Rasch’s models for measurement (see, for instance, Fisher & Stenner, 2013). In many ways, the history of science and philosophy continues to be a footnote to Plato.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

 

Metrics, Stocks, Shares, and Secure Ledger Accounts for Living Capital: Getting the Information into the Hands of Individual Decision Makers

August 30, 2018

Individual investments in, and returns from, shares of various kinds of human, social, and natural capital stocks will be tracked in secure online accounting ledgers, often referred to generically using the Blockchain brand name. A largely unasked and unanswered question is just what kind of data would best be tracked in secure ledgers. To be meaningful, entries in such accounts will have to stand for something real in the world that is represented in a common language interpretable to anyone capable of reading the relevant signs and symbols. Since we are talking about amounts of things that vary, measurement will unavoidably be a factor.

High quality measurement is essential to the manageability and profitability of investments of all kinds, whether in manufactured capital and property, or in literacy, numeracy, mental and physical health, sociability, and environmental quality (human, social, and natural capital). The measurability and manageability of these intangible factors has achieved significant levels of scientific precision and rigor over the last 90 and more years.

This development is of increasing interest to economists and accountants who have long envisioned ways of reinventing capitalism that do not assume the only alternative is some form of socialism or communism (see references listed below). Many of today’s economic problems may follow from capitalism’s incompleteness. More specifically, we may be suffering from the way in which manufactured capital alone has been been brought to life, economically speaking, while human, social, and natural capital have not (Fisher, 2002, 2007, 2009a/b, 2010a/b, 2011a/b, 2012ab, 2014, etc.).

One in particular who speaks directly to an essential issue that must be addressed in creating an economy of authentic wealth and genuine productivity is Paul Hawken (2007, pp. 21-22), who says that Friedrich Hayek foresaw

“a remedy for the basic expression of the totalitarian impulse: ensuring that information and the right to make decisions are co-located. To achieve this, one can either move the information to the decision makers, or move decision making rights to the information. The movement strives to do both. The earth’s problems are everyone’s problems, and what modern technology and the movement can achieve together is to distribute problem solving tools.”

Hayek (1945, 1948, 1988; Frantz & Leeson, 2013) is well known for his focus on a distinction between a mechanical definition of individuals as uniform and homogenous, and a more vital sense of economic “true individuals” as complex and interdependent. To create efficient markets for the production of authentic wealth, we need to figure out how to extend the “true individuals” of manufactured capital markets into new markets for human, social, and natural capital (Fisher, 2014).

The distributed problem solving tools we need to support the decision making of “true” individuals are secure online ledgers accounting for investments in measured amounts of authentic wealth. Efficient markets are functions of individual processes that create wholes greater than their sums. The multiplier effect that makes this possible depends on transparent communication. Words, including number words, have to mean something specific and distinct. This is where the value of systematic measurement and metrology comes to bear. This is why we need an Intangible Assets Metric System.

For as long as economists have been concerned with markets, philosophers have been pointing out that society is an effect of shared symbol systems. In both cases, economists and philosophers are focused on the fact that it is only when people have a common language that an idea, a meme, can go viral, that a market can seem to have a mind of its own, and science can maintain an ever-increasing pace of technical innovation.

Our aim is to create the information that will populate the entries in the secure ledger accounts people use to track and manage their investments in literacy, numeracy, health, social, and natural capital. These entries will be posted right alongside their existing entries for investments in manufactured capital and property, which includes everything from groceries to autos to electronics to homes.

But the new ledger accounts will be different from today’s in important ways. Many current accounting entries are ultimately written off as costs producing untracked and unaccountable returns. We simply spend the money on groceries or school tuition or a doctor visit. The income is logged, and so are the expenses. We can see that, yes, buying groceries is an investment of a kind, since we profit from it by enjoying the processes of cooking, sharing, and eating tasty food, by avoiding hunger, and by sustaining good health.

Investments are tracked in a different way, though. Money is not just spent and kissed goodbye. Instead, investment funds are loaned to or leased by someone else who is expected to be able to increase the value of those funds. There are often no guarantees of an increase, but the invested value is associated with a proportionate share in the total value of the business. As the business grows or fails, so does the investment.

In much the same way, if we had the information available to us, we could track the returns on the investments we make in food, education, or health care. If we track the impacts of our dietary choices, we would be able to see if and when the investments we make result in healthy outcomes. The information brought to bear will have to include systematic advice relevant to one’s age, sex, pre-existing conditions, genetic propensities, etc. Additional information on the returns on one’s investments in a healthy diet should also be made available, as might be found in the expected income or expenses associated with the consequences of what is eaten, and how much of it. Sometimes there will be room for improvement, for example, if the foods we eat are too sugary or fatty, or if we eat too much. Other times, maintaining a healthy, varied diet may be all that is needed to see a consistent positive return on investment.

Public reports will allow us all to learn from one another. The ability to communicate in a common language and to see what has worked for others will enable everyone to experiment with new ways of doing things. People with common food interests or problems, for instance, will be able quickly evaluate the relevance and benefits of other people’s approaches or solutions. Because of the ways in which communication and community go together, it may be reasonable to hope that new levels of innovation, diversity, tolerance, and respect will follow.

Many aspects of work, education and health care are already undergoing transformations that move their processes out of the usual office, school and hospital environments. These changes will be accelerated as distributed network effects take hold in each of these various markets.

It is easy to see how the Internet of things may evolve to be the medium in which we manage relationships of all kinds, from education and school to health and safety to work and career. Secure ledgers immune from hacking will be essential. And an important health factor will be to know how much relationship management is enough, and when it’s time to get out into the world. That balancing factor will be a key aspect of a successful approach to connecting information on authentic wealth with the individual decision makers growing it and living it.

References

Andriessen, D. (2003). Making sense of intellectual capital: Designing a method for the valuation of intangibles. Oxford, England: Butterworth-Heinemann.

Anielski, M. (2007). The economics of happiness: Building genuine wealth. Gabriola, British Columbia: New Society Publishers.

Cadman, D. (1986). Money as if people mattered. In P. Ekins &  Staff of The Other Economic Summit (Eds.), The living economy: A new economics in the making (pp. 204-210). London: Routledge & Kegan Paul.

Eisler, R. (2007). The real wealth of nations: Creating a caring economics. San Francisco, California: Berrett-Koehler Publishers, Inc.

Ekins, P. (1992). A four-capital model of wealth creation. In P. Ekins & M. Max-Neef (Eds.), Real-life economics: Understanding wealth creation (pp. 147-155). London: Routledge.

Ekins, P. (1999). Economic growth and environmental sustainability: The prospects for green growth. New York: Routledge.

Ekins, P., Dresner, S., & Dahlstrom, K. (2008, March/April). The four-capital method of sustainable development evaluation. European Environment, 18(2), 63-80.

Ekins, P., Hillman, M., & Hutchison, R. (1992). The Gaia atlas of green economics (Foreword by Robert Heilbroner). New York: Anchor Books.

Ekins, P., & Max-Neef, M. A. (Eds.). (1992). Real-life economics: Understanding wealth creation. London: Routledge.

Ekins, P., & Voituriez, T. (2009). Trade, globalization and sustainability impact assessment: A critical look at methods and outcomes. London, England: Earthscan Publications Ltd.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009a, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009b). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (Tech. Rep., http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010a). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital., Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (p. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340674).

Fisher, W. P., Jr. (2010b, 13 January). Reinventing capitalism: Diagramming living capital flows in a green, sustainable, and responsible economy. Retrieved from LivingCapitalMetrics.com: https://livingcapitalmetrics.wordpress.com/2010/01/13/reinventing-capitalism/.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. Journal of Applied Measurement, 12(1), 49-66.

Fisher, W. P., Jr. (2011b). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com. Retrieved 18 January 2011, from Social Science Research Network: http://ssrn.com/abstract=1739386.

Fisher, W. P., Jr. (2012a). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012b, May/June). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2014, Autumn). The central theoretical problem of the social sciences. Rasch Measurement Transactions, 28(2), 1464-1466.

Frantz, R., & Leeson, R. (Eds.). (2013). Hayek and behavioral economics. (Archival Insights Into the Evolution of Economics). New York: Palgrave Macmillan.

Gleeson-White, J. (2015). Six capitals, or can accountants save the planet? Rethinking capitalism for the 21st century. New York: Norton.

Greider, W. (2003). The soul of capitalism: Opening paths to a moral economy. New York: Simon & Schuster.

Griliches, Z. (1994, March). Productivity, R&D, and the data constraint. American Economic Review, 84(1), 1-23.

Grootaert, C. (1998). Social capital: The missing link? (Vol. 3). Social Capital Intiative Working Paper). Washington, D.C.: The World Bank.

Hand, J. R. M., & Lev, B. (Eds.). (2003). Intangible assets: Values, measures, and risks. Oxford Management Readers). Oxford, England: Oxford University Press.

Hart, S. L. (2005). (2007). Capitalism at the crossroads: Aligning business, earth, and humanity (Foreword by Al Gore) (2nd ed.). Wharton School Publishing.

Hawken, P. (1993). The ecology of commerce: A declaration of sustainability. New York: HarperCollins Publishers.

Hawken, P. (2007). Blessed unrest: How the largest movement in the world came into being and why no one saw it coming. New York: Viking Penguin.

Hayek, F. A. (1945, September). The use of knowledge in society. American Economic Review, 35, 519-530. (Rpt. in Individualism and economic order (pp. 77-91). Chicago: University of Chicago Press.)

Hayek, F. A. (1955). The counter revolution of science. Glencoe, Illinois: Free Press.

Hayek, F. A. (1988). The fatal conceit: The errors of socialism (W. W. Bartley, III, Ed.) (Vol. I). The Collected Works of F. A. Hayek. Chicago: University of Chicago Press.

Korten, D. (2009). Agenda for a new economy: From phantom wealth to real wealth. San Francisco: Berret-Koehler Publishing.

Krueger, A. B. (Ed.). (2009). Measuring the subjective well-being of nations: National accounts of time use and well-being. National Bureau of Economic Research Conference Reports). Chicago, Illinois: University of Chicago Press.

Swann, G. M. P. (2001). “No Wealth But Life”: When does conventional wealth create Ruskinian wealth. European Research Studies, 4(3-4), 5-18.

Vemuri, A. W., & Costanza, R. (2006, 10 June). The role of human, social, built, and natural capital in explaining life satisfaction at the country level: Toward a National Well-Being Index. Ecological Economics, 58(1), 119-133.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Self-Sustaining Sustainability, Once Again, Already

August 12, 2018

The urgent need for massive global implementations of sustainability policies and practices oddly and counterproductively has not yet led to systematic investments in state of the art sustainability metric standards. My personal mission is to contribute to meeting this need. Longstanding, proven resources in the art and science of precision instrumentation calibration and explanatory theory are available to address these problems. In the same way technical standards for measuring length, mass, volume, time, energy, light, etc. enable the coordination of science and commerce for manufactured capital and property, so, too, will a new class of standards for measuring human, social, and natural capital.

This new art and science contradicts common assumptions in three ways. First, contrary to popular opinion that measuring these things is impossible, over 90 years of research and practice support a growing consensus among weights and measures standards engineers (metrologists) and social and psychological measurement experts that relevant unit standards are viable, feasible, and desirable.

Common perceptions are contradicted in a second way in that measurement of this kind does not require reducing human individuality to homogenized uniform sameness. Instead of a mechanical metaphor of cogs in a machine, the relevant perspective is an organic or musical one. The goal is to ensure that local uniqueness and creative improvisations are freely expressed in a context informed by shared standards (like DNA, or a musical instrument tuning system).

The third way in which much of what we think we know is mistaken concerns how to motivate adoption of sustainability policies and practices. Many among us are fearful that neither the general population nor its leaders in government and business care enough about sustainability to focus on implementing solutions. But finding the will to act is not the issue. The problem is how to create environments in which new sustainable forms of life multiply and proliferate of their own accord. To do this, people need means for satisfying their own interests in life, liberty, and the pursuit of happiness. The goal, therefore, is to organize knowledge infrastructures capable of informing and channeling the power of individual self-interest. The only way mass scale self-sustaining sustainable economies will ever happen is by tapping the entrepreneurial energy of the profit motive, where profit is defined not just in financial terms but in the quality of life and health terms of authentic wealth and genuine productivity.

We manage what we measure. If we are to collectively, fluidly, efficiently, and innovatively manage the living value of our human, social, and natural capital, we need, first, high quality information expressed in shared languages communicating that value. Second, we need, to begin with, new scientific, legal, economic, financial, and governmental institutions establishing individual rights to ownership of that value, metric units expressing amounts of that value, conformity audits for ascertaining the accuracy and precision of those units, financial alignments of the real value measured with bankable dollar amounts, and investment markets to support entrepreneurial innovations in creating that value.

The end result of these efforts will be a capacity for all of humanity to pull together in common cause to create a sustainable future. We will each be able to maximize our own personal potential at the same time we contribute to the greater good. We will not only be able to fulfill the potential of our species as stewards of the earth, we will have fun doing it! For technical information resources, see below. PDFs are available on request, and can often be found freely available online.

Self-Sustaining Sustainability

Relevant Information Resources

William P. Fisher, Jr., Ph.D.

Barney, M., & Fisher, W. P., Jr. (2016). Adaptive measurement and assessment. Annual Review of Organizational Psychology and Organizational Behavior, 3, 469-490.

Fisher, W. P., Jr. (1997). Physical disability construct convergence across instruments: Towards a universal metric. Journal of Outcome Measurement, 1(2), 87-113.

Fisher, W. P., Jr. (1999). Foundations for health status metrology: The stability of MOS SF-36 PF-10 calibrations across samples. Journal of the Louisiana State Medical Society, 151(11), 566-578.

Fisher, W. P., Jr. (2000). Objectivity in psychosocial measurement: What, why, how. Journal of Outcome Measurement, 4(2), 527-563.

Fisher, W. P., Jr. (2002). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2003). The mathematical metaphysics of measurement and metrology: Towards meaningful quantification in the human sciences. In A. Morales (Ed.), Renascent pragmatism: Studies in law and social science (pp. 118-153). Brookfield, VT: Ashgate Publishing Co.

Fisher, W. P., Jr. (2004). Meaning and method in the social sciences. Human Studies: A Journal for Philosophy & Social Sciences, 27(4), 429-454.

Fisher, W. P., Jr. (2007). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009, November 19). Draft legislation on development and adoption of an intangible assets metric system. Living Capital Metrics blog: https://livingcapitalmetrics.wordpress.com/2009/11/19/draft-legislation/.

Fisher, W. P., Jr. (2009). Invariance and traceability for measures of human, social, and natural capital. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010, 22 November). Meaningfulness, measurement, value seeking, and the corporate objective function: An introduction to new possibilities. LivingCapitalMetrics.com, Sausalito, California.

Fisher, W. P., Jr. (2010). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital. Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340674).

Fisher, W. P., Jr. (2010). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics Conference Series, 238(1), 012016.

Fisher, W. P., Jr. (2011). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2015). A probabilistic model of the law of supply and demand. Rasch Measurement Transactions, 29(1), 1508-1511 [http://www.rasch.org/rmt/rmt291.pdf].

Fisher, W. P., Jr. (2015). Rasch measurement as a basis for metrologically traceable standards. Rasch Measurement Transactions, 28(4), 1492-1493 [http://www.rasch.org/rmt/rmt284.pdf].

Fisher, W. P., Jr. (2015). Rasch metrology: How to expand measurement locally everywhere. Rasch Measurement Transactions, 29(2), 1521-1523.

Fisher, W. P., Jr. (2017, September). Metrology, psychometrics, and new horizons for innovation. 18th International Congress of Metrology, Paris, 10.1051/metrology/201709007.

Fisher, W. P., Jr. (2017). A practical approach to modeling complex adaptive flows in psychology and social science. Procedia Computer Science, 114, 165-174.

Fisher, W. P., Jr. (2018). How beauty teaches us to understand meaning. Educational Philosophy and Theory, in review.

Fisher, W. P., Jr. (2018). Separation theorems in econometrics and psychometrics: Rasch, Frisch, two Fishers, and implications for measurement. Scandinavian Economic History Review, in review.

Fisher, W. P., Jr., Harvey, R. F., & Kilgore, K. M. (1995). New developments in functional assessment: Probabilistic models for gold standards. NeuroRehabilitation, 5(1), 3-25.

Fisher, W. P., Jr., Harvey, R. F., Taylor, P., Kilgore, K. M., & Kelly, C. K. (1995). Rehabits: A common language of functional assessment. Archives of Physical Medicine and Rehabilitation, 76(2), 113-122.

Fisher, W. P., Jr., & Stenner, A. J. (2011, January). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series).National Science Foundation: http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36.

Fisher, W. P., Jr., & Stenner, A. J. (2011, August 31 to September 2). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium, http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf, Jena, Germany.

Fisher, W. P., Jr., & Stenner, A. J. (2016). Theory-based metrological traceability in education: A reading measurement network. Measurement, 92, 489-496.

Fisher, W. P., Jr., & Wilson, M. (2015). Building a productive trading zone in educational assessment research and practice. Pensamiento Educativo: Revista de Investigacion Educacional Latinoamericana, 52(2), 55-78.

Pendrill, L., & Fisher, W. P., Jr. (2013). Quantifying human response: Linking metrological and psychometric characterisations of man as a measurement instrument. Journal of Physics Conference Series, 459, 012057.

Pendrill, L., & Fisher, W. P., Jr. (2015). Counting and quantification: Comparing psychometric and metrological perspectives on visual perceptions of number. Measurement, 71, 46-55.

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

On social impact bonds and critical reflections

May 5, 2018

A new article (Roy, McHugh, & Sinclair, 2018) out this week in the Stanford Social Innovation Review echoes Gleeson-White (2015) in pointing out a disconnect between financial bottom lines and the social missions of companies whose primary objectives concern broader social and environmental impacts. The article also notes the expense of measurement, increased administrative burdens, high transaction costs, technical issues in achieving fair measures, the trend toward the negative implications of managing what is measured instead of advancing the mission, and the potential impacts of external policy environments and political climates.

The authors contend that social impact bonds are popular and proliferating for ideological reasons, not because of any evidence concerning their effectiveness in making the realization of social objectives profitable. Some of the several comments posted online in response to the article take issue with that claim, and point toward evidence of effectiveness. But the general point still stands: more must be done to systematically align investors’ financial interests with the citizens’ interest in advancing their financial, social, and environmental quality of life, and not just with the social service providers’ interest in funding and advancing their mission.

Roy et al. are correct to say that to do otherwise is to turn the people served into commodities. This happens because governance of, accountability for, and reporting of social impacts are shifted away from elected officials to the needs of private funders, with far less in the way of satisfactory recourse for citizens when programs go awry. The problem lies in the failure to create any capacity for individuals themselves to represent, invest in, manage, and profit from their skills, health, trust, and environmental service outcomes. Putting all the relevant information into the hands of service providers and investors, and making that information as low quality as it is, can only ever result in one-sided effects on people themselves. With no idea of the technologies, models, decades of results, and ready examples to draw from in the published research, the authors conclude with a recommendation to leave well enough alone and to pursue more traditional avenues of policy formation, instead of allowing the “cultural supremacy of market principles” to continue advancing into every area of life.

But as is so commonly the case when it comes to technical issues of quantification, the authors’ conclusions and criticisms skip over the essential role that high quality measurement plays in reducing transaction costs and supporting property rights. In general, measurement standards inform easily communicated and transferable information about the quantity and quality of products in markets, thereby lowering transaction costs and enabling rights to the ownership of specific amounts of things. The question that goes unasked in this article, and in virtually every other article in the area of ESG, social impact investing, etc., is this: What kind of measurement technologies and systems would we need to be able to replicate existing market efficiencies in new markets for human, social, and natural capital?

That question and other related ones are, of course, the theme of this blog and of many of my publications. Further exploration here and in the references to other posts (such as Fisher, 2011, 2012a, 2012b) may prove fruitful to others seriously interested in finding a way out of the unexamined assumptions stifling creativity in this area.

In short, instead of turning people into commodities, why should we not turn skills, health, trust, and environmental services into commodities? Why should not every person have legal title to scientifically and uniformly measured numbers of shares of each essential form of human, social, and natural capital? Why should individuals not be able to profit in both monetary and personal terms from their investments in education, health care, community, and the environment? Why should we allow corporations to continue externalizing the costs of social and environmental investments, at the expense of individual citizens and communities? Why is there so much disparity and inequality in the opportunities for skill development and healthy lives available across social sectors?

Might not our inability to obtain good information about processes and outcomes in the domains of educational, health care, social service, and environmental management have a lot to do with it? Why don’t we have the information infrastructure we need, when the technology for creating it has been in development for over 90 years? Why are there so many academics, researchers, philanthropic organizations, and government agencies that are content with the status quo when these longstanding technologies are available, and people, communities, and the environment are suffering from the lack of the information they ought to have?

During the French revolution, one of the primary motivations for devising the metric system was to extend the concept of universal rights to individual commercial exchanges. The confusing proliferation of metrics in Europe at the time made it possible for merchants and the nobility to sell in one unit and buy with another. Universal rights plainly implied universal measures. Alder (2002, p. 2) explains that:

“To do their job, standards must operate as a set of shared assumptions, the unexamined background against which we strike agreements and make distinctions. So it is not surprising that we take measurement for granted and consider it banal. Yet the use a society makes of its measures expresses its sense of fair dealing. That is why the balance scale is a widespread symbol of justice. .. Our methods of measurement define who we are and what we value.”

Getting back to the article by Roy, McHugh, and Sinclair, yes, it is true that the measures in use in today’s social impact bonds are woefully inadequate. Far from living up to the kind of justice symbolized by the balance scale, today’s social impact measures define who we are in terms of units of measurement that differ and change in unknown ways across individuals, over time, and across instruments. This is the reason for many, if not all, of the problems Roy et al. find with social impact bonds: their measures are not up to the task.

But instead of taking that as an unchangeable given, should not we do more to ask what kinds of measures could do the job that needs to be done? Should not we look around and see if in fact there might be available technologies able to advance the cause?

Theory and evidence have, in fact, been brought to bear in formulating approaches to instrument calibration that reproduce the balance scale’s fair and just comparisons of weight from data like that from tests and surveys (Choi, 1998; Massof, 2011; Rasch, 1960, pp. 110-115). The same thing has been done in reproducing measures of length (Stephanou & Fisher, 2013), distance (Moulton, 1993), and density (Pelton & Bunderson, 2003).

These are not isolated and special results. The methods involved have been in use for decades and in dozens of fields (Wright, 1968, 1977, 1999; Wright & Masters, 1982; Wright & Stone, 1979, 1999; Andrich, 1978, 1988, 1989, 2010; Bond & Fox, 2015; Engelhard, 2012; Wilson, 2005; Wilson & Fisher, 2017). Metric system engineers and physicists are in accord with psychometricians as to the validity of these claims (Pendrill & Fisher, 2015) and are on the record with positive statements of support:

“Rasch models belong to the same class that metrologists consider paradigmatic of measurement” (Mari and Wilson, 2014, p. 326).

“The Rasch approach…is not simply a mathematical or statistical approach, but instead [is] a specifically metrological approach to human-based measurement” (Pendrill, 2014, p. 26).

These statements represent the attitude toward measurement possibilities being applied by at least one effort in the area of social impact investing (https://www.aldcpartnership.com/#/cases/financing-the-future). Hopefully, there will be many more projects of this kind emerging in the near future.

The challenges are huge, of course. This is especially the case when considering the discontinuous levels of complexity that have to be negotiated in making information flow across locally situated individual niches, group-level organizations and communities, and global accountability applications (Fisher, 2017; Fisher, Oon, & Benson, 2018; Fisher & Stenner, 2018). But taking on these challenges makes far more sense than remaining complicitly settled in a comfortable rut, throwing up our hands at how unfair life is.

There’s a basic question that needs to be asked. If what is presented as measurement raises transaction costs and does not support ownership rights to what is measured, is it really measurement? How can the measurement of kilowatts, liters, and grams lower transaction costs and support property rights at the same time that other so-called measurements raise transaction costs and do not support property rights? Does not this inconsistency suggest something might be amiss in the way measurement is conceived in some areas?

For more info, check out these other posts here:

https://livingcapitalmetrics.wordpress.com/2015/05/01/living-capital-metrics-for-financial-and-sustainability-accounting-standards/

https://livingcapitalmetrics.wordpress.com/2014/11/08/another-take-on-the-emerging-paradigm-shift/

https://wordpress.com/post/livingcapitalmetrics.wordpress.com/1812

https://wordpress.com/post/livingcapitalmetrics.wordpress.com/497

References

Alder, K. (2002). The measure of all things: The seven-year odyssey and hidden error that transformed the world. New York: The Free Press.

Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43(4), 561-573.

Andrich, D. (1988). Sage University Paper Series on Quantitative Applications in the Social Sciences. Vol. series no. 07-068: Rasch models for measurement. Beverly Hills, California: Sage Publications.

Andrich, D. (1989). Constructing fundamental measurements in social psychology. In J. A. Keats, R. Taft, R. A. Heath & S. H. Lovibond (Eds.), Mathematical and theoretical systems. Proceedings of the 24th International Congress of Psychology of the International Union of Psychological Science, Vol. 4 (pp. pp. 17-26). Amsterdam, Netherlands: North-Holland.

Andrich, D. (2010). Sufficiency and conditional estimation of person parameters in the polytomous Rasch model. Psychometrika, 75(2), 292-308.

Bond, T., & Fox, C. (2015). Applying the Rasch model: Fundamental measurement in the human sciences, 3d edition. New York: Routledge.

Choi, E. (1998). Rasch invents “ounces.” Popular Measurement, 1(1), 29. Retrieved from https://www.rasch.org/pm/pm1-29.pdf

Engelhard, G., Jr. (2012). Invariant measurement: Using Rasch models in the social, behavioral, and health sciences. New York: Routledge Academic.

Fisher, W. P., Jr. (2011). Bringing human, social, and natural capital to life: Practical consequences and opportunities. Journal of Applied Measurement, 12(1), 49-66.

Fisher, W. P., Jr. (2012a). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012b, May/June). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2017). A practical approach to modeling complex adaptive flows in psychology and social science. Procedia Computer Science, 114, 165-174. Retrieved from https://doi.org/10.1016/j.procs.2017.09.027

Fisher, W. P., Jr., Oon, E. P.-T., & Benson, S. (2018). Applying Design Thinking to systemic problems in educational assessment information management. Journal of Physics Conference Series, pp. in press; [http://media.imeko-tc7-rio.org.br/media/uploads/s/wfisher@berkeley.edu_1497049869_781396.pdf].

Fisher, W. P., Jr., & Stenner, A. J. (2018). Ecologizing vs modernizing in measurement and metrology. Journal of Physics Conference Series, pp. in press [http://media.imeko-tc7-rio.org.br/media/uploads/s/wfisher@berkeley.edu_1496875919_204672.pdf].

Gleeson-White, J. (2015). Six capitals, or can accountants save the planet? Rethinking capitalism for the 21st century. New York: Norton.

Mari, L., & Wilson, M. (2014, May). An introduction to the Rasch measurement approach for metrologists. Measurement, 51, 315-327.

Massof, R. W. (2011). Understanding Rasch and Item Response Theory models: Applications to the estimation and validation of interval latent trait measures from responses to rating scale questionnaires. Ophthalmic Epidemiology, 18(1), 1-19.

Moulton, M. (1993). Probabilistic mapping. Rasch Measurement Transactions, 7(1), 268 [http://www.rasch.org/rmt/rmt71b.htm].

Pelton, T., & Bunderson, V. (2003). The recovery of the density scale using a stochastic quasi-realization of additive conjoint measurement. Journal of Applied Measurement, 4(3), 269-281.

Pendrill, L. (2014, December). Man as a measurement instrument [Special Feature]. NCSLi Measure: The Journal of Measurement Science, 9(4), 22-33.

Pendrill, L., & Fisher, W. P., Jr. (2015). Counting and quantification: Comparing psychometric and metrological perspectives on visual perceptions of number. Measurement, 71, 46-55.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Roy, M. J., McHugh, N., & Sinclair, S. (2018, 1 May). A critical reflection on social impact bonds. Stanford Social Innovarion Review. Retrieved 5 May 2018, from https://ssir.org/articles/entry/a_critical_reflection_on_social_impact_bonds?utm_source=Enews&utm_medium=Email&utm_campaign=SSIR_Now&utm_content=Title.

Stephanou, A., & Fisher, W. P., Jr. (2013). From concrete to abstract in the measurement of length. Journal of Physics Conference Series, 459, http://iopscience.iop.org/1742-6596/459/1/012026.

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Wilson, M., & Fisher, W. (2017). Psychological and social measurement: The career and contributions of Benjamin D. Wright. New York: Springer.

Wright, B. D. (1968). Sample-free test calibration and person measurement. In Proceedings of the 1967 invitational conference on testing problems (pp. 85-101 [http://www.rasch.org/memo1.htm]). Princeton, New Jersey: Educational Testing Service.

Wright, B. D. (1977). Solving measurement problems with the Rasch model. Journal of Educational Measurement, 14(2), 97-116 [http://www.rasch.org/memo42.htm].

Wright, B. D. (1999). Fundamental measurement for psychology. In S. E. Embretson & S. L. Hershberger (Eds.), The new rules of measurement: What every educator and psychologist should know (pp. 65-104 [http://www.rasch.org/memo64.htm]). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Wright, B. D., & Masters, G. N. (1982). Rating scale analysis: Rasch measurement. Chicago, Illinois: MESA Press.

Wright, B. D., & Stone, M. H. (1979). Best test design: Rasch measurement. Chicago, Illinois: MESA Press.

Wright, B. D., & Stone, M. H. (1999). Measurement essentials. Wilmington, DE: Wide Range, Inc. [http://www.rasch.org/measess/me-all.pdf].