Archive for the ‘market efficiency’ Category

Differences between today’s sustainability metrics and the ones needed for low cost social value transactions and efficient markets for intangible assets

November 16, 2017

Measurement is such a confusing topic! Everyone proclaims how important it is, but almost no one ever seeks out and implements the state of the art, despite the enormous advantages to be gained from doing so.

A key metric quality issue concerns the cumbersome and uninterpretable masses of data that well-intentioned people can hobble themselves with when they are interested in improving their business processes and outcomes. They focus on what they can easily count, and then they wrongly (at great but unrecognized cost) misinterpret the counts and percentages as measures.

For instance, today’s sustainability and social value indicators are each expressed in a different unit (dollars, hours, tons, joules, kilowatt hours, survey ratings, category percentages, etc.; see below for a sample list). Some of them may indeed be scientific measures of that individual aspect of the business. The problem is they are all being interpreted in an undefined and chaotic aggregate as a measure of something else (social value, sustainability, etc.). Technically speaking, if we want a scientific measure of that higher order construct, we need to model it, estimate it, calibrate it, and deploy it as a common language in a network of instruments all traceable to a common unit standard.

All of this is strictly parallel with what we do to make markets in bushels of corn, barrels of oil, and kilowatts of electricity. We don’t buy produce by count in the grocery store because unscrupulous merchants would charge the same amount for small fruits as for large. All of the scales in grocery store produce markets measure in the same unit, and all of the packages of food are similarly marked in standard units of weight and volume so we can compare prices and value.

There are a lot of advantages to taking the trouble to extend this system to social value. I suppose every one of these points could be a chapter in a book:

  • First, investing in scientific measurement reduces data volume to a tiny fraction of what we start with, not only with no loss of information but with the introduction of additional information telling us how confident we can be in the data and exactly what the data specifically mean (see below). That is, all the original information is recoverable from the calibrated measure, which is also qualified with an uncertainty range and a consistency statistic. Inconsistencies can be readily identified and acted on at individual levels.
  • Now the numbers represent something that adds up the way they do, instead of standing for the unknown, differing, and uncontrolled units used in the original counts and percentages.
  • We can take missing data into account, which means we can adapt the indicators used in different situations to specific circumstances without compromising comparability.
  • We know how to gauge the dependability of the data better, meaning that we will not be over-confident about unreliable data, and we won’t waste our time and resources obtaining data of greater precision than we actually need.
  • Furthermore, the indicators themselves are now scaled into a hierarchy that maps the continuum from low to high performance. This map points the way to improvement. The order of things on the scale shows what comes first and how more complex and difficult goals build on simpler and easier ones. The position of a measure on the scale shows what’s been accomplished, what remains to be done, and what to do next.
  • Finally, we have a single metric we can use to price value across the local particulars of individual providers. This is where it becomes possible to see who gives the most bang for the buck, to reward them, to scale up an expanded market for the product, and to monetize returns on investment.

The revolutionary network effects of efficient markets are produced by the common currencies for the exchange of value that emerge out of this context. Improvements rebalancing cost and quality foster deflationary economies that drive more profit from lower costs (think Moore’s law). We gain the efficiency of dramatic reductions in data volume, and the meaningfulness of numbers that stand for something substantively real in the world that we can act on. These combine to lower the cost of transactions, as it now becomes vastly less expensive to find out how much of the social good is available, and what quality it is. Instead of dozens or hundreds of indicators repeated for each company in an industry, and repeated for each division in each company, and all of these repeated for each year or quarter, we have access to all of that information properly contextualized in a succinct, meaningful, and interpretable format for different applications at individual, organizational, industry-wide, national, regional, or global levels of complexity.

That’s likely way too much to digest at once! But it seemed worth saying it all at once in once place, in case anyone might be motivated to get in touch or start efforts in this direction on their own.

Examples of the variety of units in a handy sustainability metrics spreadsheet can be found at the Hess web site (http://www.hess.com/sustainability/performance-data/key-sustainability-metrics): freshwater use in millions or thousands of cubic meters, solid waste and carbon emissions in thousands of tons, natural gas consumption in thousands of gigajoules, electricity consumption in thousands of kilowatt hours; employee union members, layoffs, and turnover as percentages; employee lost time incident rates in hundreds of thousands of hours worked, percentages of female or minority board members, dollars for business performance.

These indicators are chosen with good reasons for use within each specific area of interest. They comprise an intuitive observation model that has face validity. But this is only the start of the work that needs to be done to create the metrics we need if we are to radically multiply the efficiency of social value markets. For an example of how to work from today’s diverse arrays of social value indicators (where each one is presented in its own spreadsheet) toward more meaningful, adaptable, and precise measures, see:

Fisher, W. P., Jr. (2011). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com. Social Science Research Network: http://ssrn.com/abstract=1739386 .

Advertisements

Excerpts and Notes from Goldberg’s “Billions of Drops…”

December 23, 2015

Goldberg, S. H. (2009). Billions of drops in millions of buckets: Why philanthropy doesn’t advance social progress. New York: Wiley.

p. 8:
Transaction costs: “…nonprofit financial markets are highly disorganized, with considerable duplication of effort, resource diversion, and processes that ‘take a fair amount of time to review grant applications and to make funding decisions’ [citing Harvard Business School Case No. 9-391-096, p. 7, Note on Starting a Nonprofit Venture, 11 Sept 1992]. It would be a major understatement to describe the resulting capital market as inefficient.”

A McKinsey study found that nonprofits spend 2.5 to 12 times more raising capital than for-profits do. When administrative costs are factored in, nonprofits spend 5.5 to 21.5 times more.

For-profit and nonprofit funding efforts contrasted on pages 8 and 9.

p. 10:
Balanced scorecard rating criteria

p. 11:
“Even at double-digit annual growth rates, it will take many years for social entrepreneurs and their funders to address even 10% of the populations in need.”

p. 12:
Exhibit 1.5 shows that the percentages of various needs served by leading social enterprises are barely drops in the respective buckets; they range from 0.07% to 3.30%.

pp. 14-16:
Nonprofit funding is not tied to performance. Even when a nonprofit makes the effort to show measured improvement in impact, it does little or nothing to change their funding picture. It appears that there is some kind of funding ceiling implicitly imposed by funders, since nonprofit growth and success seems to persuade capital sources that their work there is done. Mediocre and low performing nonprofits seem to be able to continue drawing funds indefinitely from sympathetic donors who don’t require evidence of effective use of their money.

p. 34:
“…meaningful reductions in poverty, illiteracy, violence, and hopelessness will require a fundamental restructuring of nonprofit capital markets. Such a restructuring would need to make it much easier for philanthropists of all stripes–large and small, public and private, institutional and individual–to fund nonprofit organizations that maximize social impact.”

p. 54:
Exhibit 2.3 is a chart showing that fewer people rose from poverty, and more remained in it or fell deeper into it, in the period of 1988-98 compared with 1969-1979.

pp. 70-71:
Kotter’s (1996) change cycle.

p. 75:
McKinsey’s seven elements of nonprofit capacity and capacity assessment grid.

pp. 94-95:
Exhibits 3.1 and 3.2 contrast the way financial markets reward for-profit performance with the way nonprofit markets reward fund raising efforts.

Financial markets
1. Market aggregates and disseminates standardized data
2. Analysts publish rigorous research reports
3. Investors proactively search for strong performers
4. Investors penalize weak performers
5. Market promotes performance
6. Strong performers grow

Nonprofit markets
1. Social performance is difficult to measure
2. NPOs don’t have resources or expertise to report results
3. Investors can’t get reliable or standardized results data
4. Strong and weak NPOs spend 40 to 60% of time fundraising
5. Market promotes fundraising
6. Investors can’t fund performance; NPOs can’t scale

p. 95:
“…nonprofits can’t possibly raise enough money to achieve transformative social impact within the constraints of the existing fundraising system. I submit that significant social progress cannot be achieved without what I’m going to call ‘third-stage funding,’ that is, funding that doesn’t suffer from disabling fragmentation. The existing nonprofit capital market is not capable of [p. 97] providing third-stage funding. Such funding can arise only when investors are sufficiently well informed to make big bets at understandable and manageable levels of risk. Existing nonprofit capital markets neither provide investors with the kinds of information needed–actionable information about nonprofit performance–nor provide the kinds of intermediation–active oversight by knowledgeable professionals–needed to mitigate risk. Absent third-stage funding, nonprofit capital will remain irreducibly fragmented, preventing the marshaling of resources that nonprofit organizations need to make meaningful and enduring progress against $100 million problems.”

pp. 99-114:
Text and diagrams on innovation, market adoption, transformative impact.

p. 140:
Exhibit 4.2: Capital distribution of nonprofits, highlighting mid-caps

pages 192-3 make the case for the difference between a regular market and the current state of philanthropic, social capital markets.

p. 192:
“So financial markets provide information investors can use to compare alternative investment opportunities based on their performance, and they provide a dynamic mechanism for moving money away from weak performers and toward strong performers. Just as water seeks its own level, markets continuously recalibrate prices until they achieve a roughly optimal equilibrium at which most companies receive the ‘right’ amount of investment. In this way, good companies thrive and bad ones improve or die.
“The social sector should work the same way. .. But philanthropic capital doesn’t flow toward effective nonprofits and away from ineffective nonprofits for a simple reason: contributors can’t tell the difference between the two. That is, philanthropists just don’t [p. 193] know what various nonprofits actually accomplish. Instead, they only know what nonprofits are trying to accomplish, and they only know that based on what the nonprofits themselves tell them.”

p. 193:
“The signs that the lack of social progress is linked to capital market dysfunctions are unmistakable: fundraising remains the number-one [p. 194] challenge of the sector despite the fact that nonprofit leaders divert some 40 to 60% of their time from productive work to chasing after money; donations raised are almost always too small, too short, and too restricted to enhance productive capacity; most mid-caps are ensnared in the ‘social entrepreneur’s trap’ of focusing on today and neglecting tomorrow; and so on. So any meaningful progress we could make in the direction of helping the nonprofit capital market allocate funds as effectively as the private capital market does could translate into tremendous advances in extending social and economic opportunity.
“Indeed, enhancing nonprofit capital allocation is likely to improve people’s lives much more than, say, further increasing the total amount of donations. Why? Because capital allocation has a multiplier effect.”

“If we want to materially improve the performance and increase the impact of the nonprofit sector, we need to understand what’s preventing [p. 195] it from doing a better job of allocating philanthropic capital. And figuring out why nonprofit capital markets don’t work very well requires us to understand why the financial markets do such a better job.”

p. 197:
“When all is said and done, securities prices are nothing more than convenient approximations that market participants accept as a way of simplifying their economic interactions, with a full understanding that market prices are useful even when they are way off the mark, as they so often are. In fact, that’s the whole point of markets: to aggregate the imperfect and incomplete knowledge held by vast numbers of traders about much various securities are worth and still make allocation choices that are better than we could without markets.
“Philanthropists face precisely the same problem: how to make better use of limited information to maximize output, in this case, social impact. Considering the dearth of useful tools available to donors today, the solution doesn’t have to be perfect or even all that good, at least at first. It just needs to improve the status quo and get better over time.
“Much of the solution, I believe, lies in finding useful adaptations of market mechanisms that will mitigate the effects of the same lack of reliable and comprehensive information about social sector performance. I would even go so far as to say that social enterprises can’t hope to realize their ‘one day, all children’ visions without a funding allociation system that acts more like a market.
“We can, and indeed do, make incremental improvements in nonprofit funding without market mechanisms. But without markets, I don’t see how we can fix the fragmentation problem or produce transformative social impact, such as ensuring that every child in America has a good education. The problems we face are too big and have too many moving parts to ignore the self-organizing dynamics of market economics. As Thomas Friedman said about the need to impose a carbon tax at a time of falling oil prices, ‘I’ve wracked my brain trying to think of ways to retool America around clean-power technologies without a price signal–i.e., a tax–and there are no effective ones.”

p. 199:
“Prices enable financial markets to work the way nonprofit capital markets should–by sending informative signals about the most effective organizations so that money will flow to them naturally..”

p. 200:
[Quotes Kurtzman citing De Soto on the mystery of capital. Also see p. 209, below.]
“‘Solve the mystery of capital and you solve many seemingly intractable problems along with it.'”
[That’s from page 69 in Kurtzman, 2002.]

p. 201:
[Goldberg says he’s quoting Daniel Yankelovich here, but the footnote does not appear to have anything to do with this quote:]
“‘The first step is to measure what can easily be measured. The second is to disregard what can’t be measured, or give it an arbitrary quantitative value. This is artificial and misleading. The third step is to presume that what can’t be measured easily isn’t very important. This is blindness. The fourth step is to say that what can’t be easily measured really doesn’t exist. This is suicide.'”

Goldberg gives example here of $10,000 invested witha a 10% increase in value, compared with $10,000 put into a nonprofit. “But if the nonprofit makes good use of the money and, let’s say, brings the reading scores of 10 elementary school students up from below grade level to grade level, we can’t say how much my initial investment is ‘worth’ now. I could make the argument that the value has increased because the students have received a demonstrated educational benefit that is valuable to them. Since that’s the reason I made the donation, the achievement of higher scores must have value to me, as well.”

p. 202:
Goldberg wonders whether donations to nonprofits would be better conceived as purchases than investments.

p. 207:
Goldberg quotes Jon Gertner from the March 9, 2008, issue of the New York Times Magazine devoted to philanthropy:

“‘Why shouldn’t the world’s smartest capitalists be able to figure out more effective ways to give out money now? And why shouldn’t they want to make sure their philanthropy has significant social impact? If they can measure impact, couldn’t they get past the resistance that [Warren] Buffet highlighted and finally separate what works from what doesn’t?'”

p. 208:
“Once we abandon the false notions that financial markets are precision instruments for measuring unambiguous phenomena, and that the business and nonproft sectors are based in mutually exclusive principles of value, we can deconstruct the true nature of the problems we need to address and adapt market-like mechanisms that are suited to the particulars of the social sector.
“All of this is a long way (okay, a very long way) of saying that even ordinal rankings of nonprofit investments can have tremendous value in choosing among competing donation opportunities, especially when the choices are so numerous and varied. If I’m a social investor, I’d really like to know which nonprofits are likely to produce ‘more’ impact and which ones are likely to produce ‘less.'”

“It isn’t necessary to replicate the complex working of the modern stock markets to fashion an intelligent and useful nonprofit capital allocation mechanism. All we’re looking for is some kind of functional indication that would (1) isolate promising nonprofit investments from among the confusing swarm of too many seemingly worthy social-purpose organizations and (2) roughly differentiate among them based on the likelihood of ‘more’ or ‘less’ impact. This is what I meant earlier by increasing [p. 209] signals and decreasing noise.”

p. 209:
Goldberg apparently didn’t read De Soto, as he says that the mystery of capital is posed by Kurtzman and says it is solved via the collective intelligence and wisdom of crowds. This completely misses the point of the crucial value that transparent representations of structural invariance hold in market functionality. Goldberg is apparently offering a loose kind of market for which there is an aggregate index of stocks for nonprofits that are built up from their various ordinal performance measures. I think I find a better way in my work, building more closely from De Soto (Fisher, 2002, 2003, 2005, 2007, 2009a, 2009b).

p. 231:
Goldberg quotes Harvard’s Allen Grossman (1999) on the cost-benefit boundaries of more effective nonprofit capital allocation:

“‘Is there a significant downside risk in restructuring some portion of the philanthropic capital markets to test the effectiveness of performance driven philanthropy? The short answer is, ‘No.’ The current reality is that most broad-based solutions to social problems have eluded the conventional and fragmented approaches to philanthropy. It is hard to imagine that experiments to change the system to a more performance driven and rational market would negatively impact the effectiveness of the current funding flows–and could have dramatic upside potential.'”

p. 232:
Quotes Douglas Hubbard’s How to Measure Anything book that Stenner endorsed, and Linacre and I didn’t.

p. 233:
Cites Stevens on the four levels of measurement and uses it to justify his position concerning ordinal rankings, recognizing that “we can’t add or subtract ordinals.”

pp. 233-5:
Justifies ordinal measures via example of Google’s PageRank algorithm. [I could connect from here using Mary Garner’s (2009) comparison of PageRank with Rasch.]

p. 236:
Goldberg tries to justify the use of ordinal measures by citing their widespread use in social science and health care. He conveniently ignores the fact that virtually all of the same problems and criticisms that apply to philanthropic capital markets also apply in these areas. In not grasping the fundamental value of De Soto’s concept of transferable and transparent representations, and in knowing nothing of Rasch measurement, he was unable to properly evaluate to potential of ordinal data’s role in the formation of philanthropic capital markets. Ordinal measures aren’t just not good enough, they represent a dangerous diversion of resources that will be put into systems that take on lives of their own, creating a new layer of dysfunctional relationships that will be hard to overcome.

p. 261 [Goldberg shows here his complete ignorance about measurement. He is apparently totally unaware of the work that is in fact most relevant to his cause, going back to Thurstone in 1920s, Rasch in the 1950s-1970s, and Wright in the 1960s to 2000. Both of the problems he identifies have long since been solved in theory and in practice in a wide range of domains in education, psychology, health care, etc.]:
“Having first studied performance evaluation some 30 years ago, I feel confident in saying that all the foundational work has been done. There won’t be a ‘eureka!’ breakthrough where someone finally figures out the one true way to guage nonprofit effectiveness.
“Indeed, I would venture to say that we know virtually everything there is to know about measuring the performance of nonprofit organizations with only two exceptions: (1) How can we compare nonprofits with different missions or approaches, and (2) how can we make actionable performance assessments common practice for growth-ready mid-caps and readily available to all prospective donors?”

p. 263:
“Why would a social entrepreneur divert limited resources to impact assessment if there were no prospects it would increase funding? How could an investor who wanted to maximize the impact of her giving possibly put more golden eggs in fewer impact-producing baskets if she had no way to distinguish one basket from another? The result: there’s no performance data to attract growth capital, and there’s no growth capital to induce performance measurement. Until we fix that Catch-22, performance evaluation will not become an integral part of social enterprise.”

pp. 264-5:
Long quotation from Ken Berger at Charity Navigator on their ongoing efforts at developing an outcome measurement system. [wpf, 8 Nov 2009: I read the passage quoted by Goldberg in Berger’s blog when it came out and have been watching and waiting ever since for the new system. wpf, 8 Feb 2012: The new system has been online for some time but still does not include anything on impacts or outcomes. It has expanded from a sole focus on financials to also include accountability and transparency. But it does not yet address Goldberg’s concerns as there still is no way to tell what works from what doesn’t.]

p. 265:
“The failure of the social sector to coordinate independent assets and create a whole that exceeds the sum of its parts results from an absence of.. platform leadership’: ‘the ability of a company to drive innovation around a particular platform technology at the broad industry level.’ The object is to multiply value by working together: ‘the more people who use the platform products, the more incentives there are for complement producers to introduce more complementary products, causing a virtuous cycle.'” [Quotes here from Cusumano & Gawer (2002). The concept of platform leadership speaks directly to the system of issues raised by Miller & O’Leary (2007) that must be addressed to form effective HSN capital markets.]

p. 266:
“…the nonprofit sector has a great deal of both money and innovation, but too little available information about too many organizations. The result is capital fragmentation that squelches growth. None of the stakeholders has enough horsepower on its own to impose order on this chaos, but some kind of realignment could release all of that pent-up potential energy. While command-and-control authority is neither feasible nor desirable, the conditions are ripe for platform leadership.”

“It is doubtful that the IMPEX could amass all of the resources internally needed to build and grow a virtual nonprofit stock market that could connect large numbers of growth-capital investors with large numbers of [p. 267] growth-ready mid-caps. But it might be able to convene a powerful coalition of complementary actors that could achieve a critical mass of support for performance-based philanthropy. The challenge would be to develop an organization focused on filling the gaps rather than encroaching on the turf of established firms whose participation and innovation would be required to build a platform for nurturing growth of social enterprise..”

p. 268-9:
Intermediated nonprofit capital market shifts fundraising burden from grantees to intermediaries.

p. 271:
“The surging growth of national donor-advised funds, which simplify and reduce the transaction costs of methodical giving, exemplifies the kind of financial innovation that is poised to leverage market-based investment guidance.” [President of Schwab Charitable quoted as wanting to make charitable giving information- and results-driven.]

p. 272:
Rating agencies and organizations: Charity Navigator, Guidestar, Wise Giving Alliance.
Online donor rankings: GlobalGiving, GreatNonprofits, SocialMarkets
Evaluation consultants: Mathematica

Google’s mission statement: “to organize the world’s information and make it universally accessible and useful.”

p. 273:
Exhibit 9.4 Impact Index Whole Product
Image of stakeholders circling IMPEX:
Trading engine
Listed nonprofits
Data producers and aggregators
Trading community
Researchers and analysts
Investors and advisors
Government and business supporters

p. 275:
“That’s the starting point for replication [of social innovations that work]: finding and funding; matching money with performance.”

[WPF bottom line: Because Goldberg misses De Soto’s point about transparent representations resolving the mystery of capital, he is unable to see his way toward making the nonprofit capital markets function more like financial capital markets, with the difference being the focus on the growth of human, social, and natural capital. Though Goldberg intuits good points about the wisdom of crowds, he doesn’t know enough about the flaws of ordinal measurement relative to interval measurement, or about the relatively easy access to interval measures that can be had, to do the job.]

References

Cusumano, M. A., & Gawer, A. (2002, Spring). The elements of platform leadership. MIT Sloan Management Review, 43(3), 58.

De Soto, H. (2000). The mystery of capital: Why capitalism triumphs in the West and fails everywhere else. New York: Basic Books.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2003). Measurement and communities of inquiry. Rasch Measurement Transactions, 17(3), 936-8 [http://www.rasch.org/rmt/rmt173.pdf].

Fisher, W. P., Jr. (2005). Daredevil barnstorming to the tipping point: New aspirations for the human sciences. Journal of Applied Measurement, 6(3), 173-9 [http://www.livingcapitalmetrics.com/images/FisherJAM05.pdf].

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-3 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In M. Wilson, K. Draney, N. Brown & B. Duckor (Eds.), Advances in Rasch Measurement, Vol. Two (p. in press [http://www.livingcapitalmetrics.com/images/BringingHSN_FisherARMII.pdf]). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2009b, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement (Elsevier), 42(9), 1278-1287.

Garner, M. (2009, Autumn). Google’s PageRank algorithm and the Rasch measurement model. Rasch Measurement Transactions, 23(2), 1201-2 [http://www.rasch.org/rmt/rmt232.pdf].

Grossman, A. (1999). Philanthropic social capital markets: Performance driven philanthropy (Social Enterprise Series 12 No. 00-002). Harvard Business School Working Paper.

Kotter, J. (1996). Leading change. Cambridge, Massachusetts: Harvard Business School Press.

Kurtzman, J. (2002). How the markets really work. New York: Crown Business.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-34.

With Reich in spirit, but with a different sense of the problem and its solution

October 4, 2015

In today’s editorial in the San Francisco Chronicle, Robert Reich seeks some way of defining a solution to the pressing problems of how globalization and technological changes have made American workers less competitive. He rightly says that “reversing the scourge of widening inequality requires reversing the upward distributions [of income] within the rules of the market, and giving average people the bargaining power they need to get a larger share of the gains from growth.”

But Reich then says that the answer to this problem lies in politics, not economics. As I’ve pointed out before in this blog, focusing on marshaling political will is part of the problem, not part of the solution. Historically, politicians do not lead, they follow. As is demonstrated across events as diverse as the Arab Spring and the Preemption Act of 1841, mass movements of people have repeatedly demanded ways of cutting through the Gordian knots of injustice. And just as the political “leadership” across the Middle East and in the early U.S. dragged its feet, obstructed, and violently opposed change until it was already well underway, so, too, will that pattern repeat itself again in the current situation of inequitable income distribution.

The crux of the problem is that no one can give average people anything, not freedom (contra Dylan’s line in Blowin’ in the Wind about “allowing” people to be free) and certainly not a larger share of the gains from growth. As the old saying goes, you can lead a horse to water, but you can’t make it drink. People have to take what’s theirs. They have to want it, they have to struggle for it, and they have to pay for it, or they cannot own it and it will never be worth anything to them.

It is well known that a lack of individual property rights doomed communism and socialism because when everything is owned collectively by everyone, no one takes responsibility for it. The profit motive has the capacity to drive people to change things. The problem is not in profit itself. If birds and bees and trees and grasses did not profit from the sun, soil, and rain, there would be no life. The problem is in finding how to get a functional, self-sustaining economic ecology off the ground, not in unrealistically trying to manipulate and micromanage every detail.

The fundamental relevant characteristic of the profits being made today from intellectual property rights is that our individual rights to our own human and social capital are counter-productively restricted and undeveloped. How can it be that no one has any idea how much literacy or health capital they have, or what it is worth?! We have a metric system that tells us how much real estate and manufactured capital we own, and we can price it. But despite the well-established scientific facts of decades of measurement science research and practice, none of us can say, “I own x number of shares of stock in intellectual, literacy, or community capital, that have a value of x dollars in today’s market.” We desperately need an Intangible Assets Metric System, and the market rules, roles, and responsibilities that will make it impossible to make a profit while destroying human, social, and natural capital.

In this vein, what Reich gets absolutely correct is hidden inside his phrase, “within the rules of the market.” As I’ve so often repeated in this blog, capitalism is not inherently evil; it is, rather, unfinished. The real evil is in prolonging the time it takes to complete it. As was so eloquently stated by Miller and O’Leary (2007, p. 710):

“Markets are not spontaneously generated by the exchange activity of buyers and sellers. Rather, skilled actors produce institutional arrangements, the rules, roles and relationships that make market exchange possible. The institutions define the market, rather than the reverse.”

We have failed to set up the institutional arrangements needed to define human, social, and natural capital markets. The problem is that we cannot properly manage three of the four major forms of capital (human, social, and natural, with the fourth being manufactured/property) because we do not measure them in a common language built into scientifically, economically, legally and financially accountable titles, deeds, and other instruments.

And so, to repeat another one of my ad nauseum broken record nostrums, the problem is the problem. As long as we keep defining problems in the way we always have, as matters of marshalling political will, we will inadvertently find ourselves contributing more to prolonging tragic and needless human suffering, social discontent, and environmental degradation.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-734.

Living Capital Metrics for Financial and Sustainability Accounting Standards

May 1, 2015

I was very happy a few days ago to come across Jane Gleeson-White’s new book, Six Capitals, or Can Accountants Save the Planet? Rethinking Capitalism for the 21st Century. The special value for me in this book comes in the form of an accessible update on what’s been going on in the world of financial accounting standards. Happily, there’s been a lot of activity (check out, for instance, Amato & White, 2013; Rogers & White, 2015). Less fortunately, the activity seems to be continuing to occur in the same measurement vacuum it always has, despite my efforts in this blog to broaden the conversation to include rigorous measurement theory and practice.

But to back up a bit, recent events around sustainability metric standards don’t seem to be connected to previous controversies around financial standards and economic modeling, which were more academically oriented to problems of defining and expressing value. Gleeson-White doesn’t cite any of the extensive literature in those areas (for instance, Anielski, 2007; Baxter, 1979; Economist, 2010; Ekins, 1992, 1999; Ekins, Dresner, & Dahlstrom, 2008; Ekins, Hillman, & Hutchins, 1992; Ekins & Voituriez, 2009; Fisher, 2009b, 2009c, 2011; Young & Williams, 2010). Valuation is still a problem, of course, as is the analogy between accounting standards and scientific standards (Baxter, 1979). But much of the sensitivity of the older academic debate over accounting standards seems to have been lost in the mad, though well-intentioned, rush to devise metrics for the traditionally externalized nontraditional forms of capital.

Before addressing the thousands of metrics in circulation and the science that needs to be brought to bear on them (the ongoing theme of posts in this blog), some attention to terminology is important. Gleeson-White refers to six capitals (manufactured, liquid, intellectual, human, social, and natural), in contrast with Ekins (1992; Ekins, et al., 2008), who describes four (manufactured, human, social, and natural). Gleeson-White’s liquid capital is cash money, which can be invested in capital (a means of producing value via ongoing services) and which can be extracted as a return on capital, but is not itself capital, as is shown by the repeated historical experience in many countries of printing money without stimulating economic growth and producing value. Of her remaining five forms of capital, intellectual capital is a form of social capital that can satisfactorily be categorized alongside the other forms of organization-level properties and systems involving credibility and trust.

On pages 209-227, Gleeson-White takes up questions relevant to the measurement and information quality topics of this blog. The context here is informed by the International Integrated Reporting Council’s (IIRC) December 2013 framework for accounting reports integrating all forms of capital (Amato & White, 2013), and by related efforts of the Sustainability Accounting Standards Board (SASB) (Rogers & White, 2015). Following the IIRC, Gleeson-White asserts that

“Not all the new capitals can be quantified, yet or perhaps ever–for example, intellectual, human and social capital, much of natural capital–and so integrated reports are not expected to provide quantitative measures of each of the capitals.”

Of course, this opinion flies in the face of established evidence and theory accepted by both metrologists (weights and measures standards engineers and physicists) and psychometricians as to the viability of rigorous measurement standards for the outcomes of education, health care, social services, natural resource management, etc. (Fisher, 2009b, 2011, 2012a, 2012b; Fisher & Stenner, 2011a, 2013, 2015; Fisher & Wilson, 2015; Mari & Wilson, 2013; Pendrill, 2014; Pendrill & Fisher, 2013, 2015; Wilson, 2013; Wilson, Mari, Maul, & Torres Irribarra, 2015). Pendrill (2014, p. 26), an engineer, physicist, and past president of the European Association of National Metrology Institutes, for instance, states that “The Rasch approach…is not simply a mathematical or statistical approach, but instead [is] a specifically metrological approach to human-based measurement.” As is repeatedly shown in this blog, access to scientific measures sets the stage for a dramatic transformation of the potential for succeeding in the goal of rethinking capitalism.

Next, Gleeson-White’s references to several of the six capitals as the “living” capitals (p. 193) is a literal reference to the fact that human, social, and natural capital are all carried by people, organizations/communities, and ecosystems. The distinction between dead and living capital elaborated by De Soto (2000) and Fisher (2002, 2007, 2010b, 2011), which involves making any form of capital fungible by representing it in abstract forms negotiable in banks and courts of law, is not taken into account, though this would seem to be a basic requirement that must be fulfilled before the rethinking of capitalism could said to have been accomplished.

Gleeson-White raises the pointed question as to exactly how integrated reporting is supposed to provoke positive growth in the nontraditional forms of capital. The concept of an economic framework integrating all forms of capital relative to the profit motive, as described in Ekins’ work, for instance, and as is elaborated elsewhere in this blog, seems just over the horizon, though repeated mention is made of natural capitalism (Hawken, Lovins, & Lovins, 1999). The posing of the questions provided by Gleeson-White (pp. 216-217) is priceless, however:

“…given integrated reporting’s purported promise to contribute to sustainable development by encouraging more efficient resource allocation, how might it actually achieve this for natural and social capitals on their own terms? It seems integrated reporting does nothing to address a larger question of resource allocation….”

“To me the fact that integrated reporting cannot address such questions suggests that as with the example of human capital, its promise to foster efficient resource allocation pertains only to financial capital and not to the other capitals. If we accept that the only way to save our societies and planet is to reconceive them in terms of capital, surely the efficient valuing and allocation of all six capitals must lie at the heart of any economics and accounting for the planet’s scarce resources in the twenty-first century.
“There is a logical inconsistency here: integrated reporting might be the beginning of a new accounting paradigm, but for the moment it is being practiced by an old-paradigm corporation: essentially, one obliged to make a return on financial capital at the cost of the other capitals.”

The goal requires all forms of capital to be integrated into the financial bottom line. Where accounting for manufactured capital alone burns living capital resources for profit, a comprehensive capital accounting framework defines profit in terms of reduced waste. This is a powerful basis for economics, as waste is the common root cause of human suffering, social discontent and environmental degradation (Hawken, Lovins, & Lovins, 1999).

Multiple bottom lines are counter-productive, as they allow managers the option of choosing which stakeholder group to satisfy, often at the expense of the financial viability of the firm (Jensen, 2001; Fisher, 2010a). Economic sustainability requires that profits be legally, morally, and scientifically contingent on a balance of powers distributed across all forms of capital. Though the devil will no doubt lurk in the details, there is increasing evidence that such a balance of powers can be negotiated.

A key point here not brought up by Gleeson-White concerns the fact that markets are not created by exchange activity, but rather by institutionalized rules, roles, and responsibilities (Miller & O’Leary, 2007) codified in laws, mores, technologies, and expectations. Translating historical market-making activities as they have played out relative to manufactured capital in the new domains of human, social, and natural capital faces a number of significant challenges, adapting to a new way of thinking about tests, assessments, and surveys foremost among them (Fisher & Stenner, 2011b).

One of the most important contributions advanced measurement theory and practice (Rasch, 1960; Wright, 1977; Andrich, 1988, 2004; Fisher & Wright, 1994; Wright & Stone, 1999; Bond & Fox, 2007; Wilson, 2005; Engelhard, 2012; Stenner, Fisher, Stone, & Burdick, 2013) can make to the process of rethinking capitalism involves the sorting out of the myriad metrics that have erupted in the last several years. Gleeson-White (p. 223) reports, for instance, that the Bloomberg financial information network now has over 750 ESG (Environmental, Social, Governance) data fields, which were extracted from reports provided by over 5,000 companies in 52 countries.  Similarly, Rogers and White (2015) say that

“…today there are more than 100 organizations offering more than 400 corporate sustainability ratings products that assess some 50,000 companies on more than 8,000 metrics of environmental, social and governance (ESG) performance.”

As is also the case with the UN Millennium Development Goals (Fisher, 2011b), the typical use of these metrics as single-item “quantities” is based in counts of relevant events. This procedure misses the basic point that counts of concrete things in the world are not measures. Is it not obvious that I can have ten rocks to your two, and you can still have more rock than I do? The same thing applies to any kind of performance ratings, survey responses, or test scores. We assign the same numeric increase to every addition of one more count, but hardly anyone experimentally tests the hypothesis that the counts all work together to measure the same thing. Those who think there’s no need for precision science in this context are ignoring the decades of successful and widespread technical work in this area, at their own risk.

The repetition of history here is fascinating. As Ashworth (2004, p. 1,314) put it, historically, “The requirements of increased trade and the fiscal demands of the state fuelled the march toward a regular form of metrology.” For instance, in 1875 it was noted that “the existence of quantitative correlations between the various forms of energy, imposes upon men of science the duty of bringing all kinds of physical quantity to one common scale of comparison” (Everett, 1875, p. 9). The moral and economic  value of common scales was recognized during the French revolution, when, Alder (2002, p. 32) documents, it was asked:

“Ought not a single nation have a uniform set of measures, just as a soldier fought for a single patrie? Had not the Revolution promised equality and fraternity, not just for France, but for all the people of the world? By the same token, should not all of the world’s people use a single set of weights and measures to encourage peaceable commerce, mutual understanding, and the exchange of knowledge? That was the purpose of measuring the world.”

The value of rigorously measuring human, social and natural capital includes meaningfully integrating qualitative substance with quantitative convenience, reduced data volume, augmenting measures with uncertainty and consistency indexes, and the capacity to take missing data into account (making possible instrument equating, item banking, etc.)  In contrast with the usual methods, rigorous science demands that experiments determine which indicators cohere to measure the same thing by repeatedly giving the same values across samples, over time and space, and across subsets of indicators. Beyond such data-based results, advanced theory makes it possible to arrive at explanatory, predictive methods that add a whole new layer of efficiency to the generation of indicators (de Boeck & Wilson, 2004; Stenner, et al., 2013).

Finally, Gleeson-White (pp. 220-221) reports that “In July 2011, the SASB [Sustainability Accounting Standards Board] was launched in the United States to create standardized measures for the new capitals.” “Founded by environmental engineer and sustainability expert Jean Rogers in San Francisco, SASB is creating a full set of industry-specific standards for sustainability accounting, with the aim of making this information more consistent and comparable.” As of May 2014, the SASB vice chair is Mary Schapiro, former SEC chair, and the chairman of SASB is Michael Bloomfield, former mayor of NYC and founder of the financial information empire. The “SASB is developing nonfinancial standards for eighty-nine industries grouped in ten different sectors and aims to have completed this grueling task by February 2015. It is releasing each set of metrics as they are completed.”

Like the SASB and other groups, Gleeson-White (p. 222) reports, Bloomberg

“aims to use its metrics to start ‘standardizing the discourse around sustainability, so we’re all talking about the same things in the same way,’ as Bloomberg’s senior sustainability strategist Andrew Park put it. What companies ‘desperately want,’ he says, is ‘a legitimate voice’ to tell them: ‘This is what you need to do. You exist in this particular sector. Here are the metrics that you need to be reporting out on. So SASB will provide that. And we think that’s important, because that will help clean up the metrics that ultimately the finance community will start using.’
“Bloomberg wants to price environmental, social and governance externalities to legitimize them in the eyes of financial capital.”

Gleeson-White (p. 225) continues, saying

“Bloomberg wants to do more generally what Trucost did for Puma’s natural capital inputs: create standardized measures for the new capitals–such as ecosystem services and social impacts–so that this information can be aggregated and used by investors. Park and Ravenel call the failure to value clean air, water, stable coastlines and other environmental goods ‘as much a failure to measure as it is a market failure per se–one that could be addressed in part by providing these ‘unpriced’ resources with quantitative parameters that would enable their incorporation into market mechanisms. Such mechanisms could then appropriately ‘regulate’ the consumption of those resources.'”

Integrating well-measured living capitals into the context of appropriately configured institutional rules, roles, and responsibilities for efficient markets (Fisher, 2010b) should indeed involve a capacity to price these resources quantitatively, though this capacity alone would likely prove insufficient to the task of creating the markets (Miller & O’Leary, 2007; Williamson, 1981, 1991, 2005). Rasch’s (1960, pp. 110-115) deliberate patterning of his measurement models on the form of Maxwell’s equations for Newton’s Second Law provides a mathematical basis for connecting psychometrics with both geometry and natural laws, as well as with the law of supply and demand (Fisher, 2010c, 2015; Fisher & Stenner, 2013a).

This perspective on measurement is informed by an unmodern or amodern, post-positivist philosophy (Dewey, 2012; Latour, 1990, 1993), as opposed to a modern and positivist, or postmodern and anti-positivist, philosophy (Galison, 1997). The essential difference is that neither a universalist nor a relativist perspective is necessary to the adoption of practices of traceability to metrological standards. Rather, focusing on local, situated, human relationships, as described by Wilson (2004) in education, for instance, offers a way of resolving the false dilemma of that dichotomous contrast. As Golinski (2012, p. 35) puts it, “Practices of translation, replication, and metrology have taken the place of the universality that used to be assumed as an attribute of singular science.” Haraway (1996, pp. 439-440) harmonizes, saying “…embedded relationality is the prophylaxis for both relativism and transcendance.” Latour (2005, pp. 228-229) elaborates, saying:

“Standards and metrology solve practically the question of relativity that seems to intimidate so many people: Can we obtain some sort of universal agreement? Of course we can! Provided you find a way to hook up your local instrument to one of the many metrological chains whose material network can be fully described, and whose cost can be fully determined. Provided there is also no interruption, no break, no gap, and no uncertainty along any point of the transmission. Indeed, traceability is precisely what the whole of metrology is about! No discontinuity allowed, which is just what ANT [Actor Network Theory] needs for tracing social topography. Ours is the social theory that has taken metrology as the paramount example of what it is to expand locally everywhere, all while bypassing the local as well as the universal. The practical conditions for the expansion of universality have been opened to empirical inquiries. It’s not by accident that so much work has been done by historians of science into the situated and material extension of universals. Given how much modernizers have invested into universality, this is no small feat.
“As soon as you take the example of scientific metrology and standardization as your benchmark to follow the circulation of universals, you can do the same operation for other less traceable, less materialized circulations: most coordination among agents is achieved through the dissemination of quasi-standards.”

As Rasch (1980: xx) understood, “this is a huge challenge, but once the problem has been formulated it does seem possible to meet it.” Though some metrologically informed traceability networks have begun to emerge in education and health care (for instance, Fisher & Stenner, 2013, 2015; Stenner & Fisher, 2013), virtually everything remains to be done to make the coordination across stakeholders as fully elaborated as the standards in the natural sciences.

References

Alder, K. (2002). The measure of all things: The seven-year odyssey and hidden error that transformed the world. New York: The Free Press.

Amato, N., & White, S. (2013, December 7). IIRC releases International Integrated Reporting Framework. Journal of Accountancy. Retrieved from http://www.journalofaccountancy.com/news/2013/dec/20139207.html

Andrich, D. (1988). Sage University Paper Series on Quantitative Applications in the Social Sciences. Vol. series no. 07-068: Rasch models for measurement. Beverly Hills, California: Sage Publications.

Andrich, D. (2004, January). Controversy and the Rasch model: A characteristic of incompatible paradigms? Medical Care, 42(1), I-7–I-16.

Andrich, D. (2010). Sufficiency and conditional estimation of person parameters in the polytomous Rasch model. Psychometrika, 75(2), 292-308.

Anielski, M. (2007). The economics of happiness: Building genuine wealth. Gabriola, British Columbia: New Society Publishers.

Ashworth, W. J. (2004, 19 November). Metrology and the state: Science, revenue, and commerce. Science, 306(5700), 1314-1317.

Baxter, W. T. (1979). Accounting standards: Boon or curse? In The Emmanuel Saxe distinguished lectures in accounting. http://newman.baruch.cuny.edu/digital/saxe/saxe_1978/baxter_79.htm.

Bond, T., & Fox, C. (2007). Applying the Rasch model: Fundamental measurement in the human sciences, 2d edition. Mahwah, New Jersey: Lawrence Erlbaum Associates.

De Boeck, P., & Wilson, M. (Eds.). (2004). Explanatory item response models: A generalized linear and nonlinear approach. Statistics for Social and Behavioral Sciences). New York: Springer-Verlag.

De Soto, H. (2000). The mystery of capital: Why capitalism triumphs in the West and fails everywhere else. New York: Basic Books.

Dewey, J. (2012). Unmodern philosophy and modern philosophy (P. Deen, Ed.). Carbondale, Illinois: Southern Illinois University Press.

Editorial. (2010, 10 June). Accounting standards: To FASB or not to FASB? The Economist, http://www.economist.com/node/16319655.

Ekins, P. (1992). A four-capital model of wealth creation. In P. Ekins & M. Max-Neef (Eds.), Real-life economics: Understanding wealth creation (pp. 147-155). London: Routledge.

Ekins, P. (1999). Economic growth and environmental sustainability: The prospects for green growth. New York: Routledge.

Ekins, P., Dresner, S., & Dahlstrom, K. (2008, March/April). The four-capital method of sustainable development evaluation. European Environment, 18(2), 63-80.

Ekins, P., Hillman, M., & Hutchison, R. (1992). The Gaia atlas of green economics (Foreword by Robert Heilbroner). New York: Anchor Books.

Ekins, P., & Voituriez, T. (2009). Trade, globalization and sustainability impact assessment: A critical look at methods and outcomes. London, England: Earthscan Publications Ltd.

Engelhard, G., Jr. (2012). Invariant measurement: Using Rasch models in the social, behavioral, and health sciences. New York: Routledge Academic.

Everett, J. D. (1875). Illustrations of the C. G. S. system of units. London, England: Taylor & Francis.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009a, November 19). Draft legislation on development and adoption of an intangible assets metric system. Retrieved 6 January 2011, from https://livingcapitalmetrics.wordpress.com/2009/11/19/draft-legislation/

Fisher, W. P., Jr. (2009b, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009c). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (Tech. Rep. No. http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC:. National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010a, 22 November). Meaningfulness, measurement, value seeking, and the corporate objective function: An introduction to new possibilities., LivingCapitalMetrics.com, Sausalito, California. Retrieved from http://ssrn.com/abstract=1713467

Fisher, W. P., Jr. (2010b). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital, Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (http://ssrn.com/abstract=2340674).

Fisher, W. P., Jr. (2010c). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics: Conference Series, 238(1), http://iopscience.iop.org/1742-6596/238/1/012016/pdf/1742-6596_238_1_012016.pdf.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2011b). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com. Retrieved 18 January 2011, from Social Science Research Network: http://ssrn.com/abstract=1739386.

Fisher, W. P., Jr. (2012a). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012b, May/June). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2015). A Rasch perspective on the law of supply and demand. Rasch Measurement Transactions, in press.

Fisher, W. P., Jr., Harvey, R. F., & Kilgore, K. M. (1995). New developments in functional assessment: Probabilistic models for gold standards. NeuroRehabilitation, 5(1), 3-25.

Fisher, W. P., Jr., Harvey, R. F., Taylor, P., Kilgore, K. M., & Kelly, C. K. (1995, February). Rehabits: A common language of functional assessment. Archives of Physical Medicine and Rehabilitation, 76(2), 113-122.

Fisher, W. P., Jr., & Stenner, A. J. (2011a, January). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series). Retrieved 12 January 2014, from National Science Foundation: http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36.

Fisher, W. P., Jr., & Stenner, A. J. (2011b, August 31 to September 2). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium, http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf, Jena, Germany.

Fisher, W. P., Jr., & Stenner, A. J. (2013a). On the potential for improved measurement in the human and social sciences. In Q. Zhang & H. Yang (Eds.), Pacific Rim Objective Measurement Symposium 2012 Conference Proceedings (pp. 1-11). Berlin, Germany: Springer-Verlag.

Fisher, W. P., Jr., & Stenner, A. J. (2013b). Overcoming the invisibility of metrology: A reading measurement network for education and the social sciences. Journal of Physics: Conference Series, 459(012024), http://iopscience.iop.org/1742-6596/459/1/012024.

Fisher, W. P., Jr., & Stenner, A. J. (2015). The role of metrology in mobilizing and mediating the language and culture of scientific facts. Journal of Physics Conference Series, 588(012043).

Fisher, W. P., Jr., & Stenner, A. J. (2015). Theory-based metrological traceability in education: A reading measurement network. Measurement, in review.

Fisher, W. P., Jr., & Wilson, M. (2015). Building a productive trading zone in educational assessment research and practice. Pensamiento Educativo, in review.

Fisher, W. P., Jr., & Wright, B. D. (1994). Introduction to probabilistic conjoint measurement theory and applications (W. P. Fisher, Jr., & B. D. Wright, Eds.) [Special issue]. International Journal of Educational Research, 21(6), 559-568.

Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.

Gleeson-White, J. (2015). Six capitals, or can accountants save the planet? Rethinking capitalism for the 21st century. New York: Norton.

Golinski, J. (2012). Is it time to forget science? Reflections on singular science and its history. Osiris, 27(1), 19-36.

Haraway, D. J. (1996). Modest witness: Feminist diffractions in science studies. In P. Galison & D. J. Stump (Eds.), The disunity of science: Boundaries, contexts, and power (pp. 428-441). Stanford, California: Stanford University Press.

Hawken, P., Lovins, A., & Lovins, H. L. (1999). Natural capitalism: Creating the next industrial revolution. New York: Little, Brown, and Co.

Jensen, M. C. (2001, Fall). Value maximization, stakeholder theory, and the corporate objective function. Journal of Applied Corporate Finance, 14(3), 8-21.

Latour, B. (1990). Postmodern? No, simply amodern: Steps towards an anthropology of science. Studies in History and Philosophy of Science, 21(1), 145-71.

Latour, B. (1993). We have never been modern. Cambridge, Massachusetts: Harvard University Press.

Latour, B. (2005). Reassembling the social: An introduction to Actor-Network-Theory. Clarendon Lectures in Management Studies). Oxford, England: Oxford University Press.

Mari, L., & Wilson, M. (2013). A gentle introduction to Rasch measurement models for metrologists. Journal of Physics Conference Series, 459(1), http://iopscience.iop.org/1742-6596/459/1/012002/pdf/1742-6596_459_1_012002.pdf.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-734.

Pendrill, L. (2014, December). Man as a measurement instrument [Special Feature]. NCSLI Measure: The Journal of Measurement Science, 9(4), 22-33.

Pendrill, L., & Fisher, W. P., Jr. (2013). Quantifying human response: Linking metrological and psychometric characterisations of man as a measurement instrument. Journal of Physics: Conference Series, 459, http://iopscience.iop.org/1742-6596/459/1/012057.

Pendrill, L., & Fisher, W. P., Jr. (2015). Counting and quantification: Comparing psychometric and metrological perspectives on visual perceptions of number. Measurement, p. in press. doi: http://dx.doi.org/10.1016/j.measurement.2015.04.010.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Rogers, J., & White, A. (2015, April 28). Focusing corporate sustainability ratings on what matters. Huffington Post. Retrieved from http://www.huffingtonpost.com/jean-rogers/focusing-corporate-sustai_b_7156148.html.

Stenner, A. J., & Fisher, W. P., Jr. (2013). Metrological traceability in the social sciences: A model from reading measurement. Journal of Physics: Conference Series, 459(012025), http://iopscience.iop.org/1742-6596/459/1/012025.

Stenner, A. J., Fisher, W. P., Jr., Stone, M. H., & Burdick, D. S. (2013, August). Causal Rasch models. Frontiers in Psychology: Quantitative Psychology and Measurement, 4(536), 1-14 [doi: 10.3389/fpsyg.2013.00536].

Williamson, O. E. (1981, November). The economics of organization: The transaction cost approach. The American Journal of Sociology, 87(3), 548-577.

Williamson, O. E. (1991). Economic institutions: Spontaneous and intentional governance [Special issue]. Journal of Law, Economics, & Organization: Papers from the Conference on the New Science of Organization, 7, 159-187.

Williamson, O. E. (2005). The economics of governance. American Economic Review, 95(2), 1-18.

Wilson, M. (Ed.). (2004). National Society for the Study of Education Yearbooks. Vol. 103, Part II: Towards coherence between classroom assessment and accountability. Chicago, Illinois: University of Chicago Press.

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Wilson, M. R. (2013). Using the concept of a measurement system to characterize measurement models used in psychometrics. Measurement, 46, 3766-3774.

Wilson, M., Mari, L., Maul, A., & Torres Irribarra, D. (2015). A comparison of measurement concepts across physical science and social science domains: Instrument design, calibration, and measurement. Journal of Physics: Conference Series, 588(012034), http://iopscience.iop.org/1742-6596/588/1/012034.

Wright, B. D. (1977). Solving measurement problems with the Rasch model. Journal of Educational Measurement, 14(2), 97-116 [http://www.rasch.org/memo42.htm].

Wright, B. D. (1999). Fundamental measurement for psychology. In S. E. Embretson & S. L. Hershberger (Eds.), The new rules of measurement: What every educator and psychologist should know (pp. 65-104 [http://www.rasch.org/memo64.htm]). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Wright, B. D., & Stone, M. H. (1999). Measurement essentials. Wilmington, DE: Wide Range, Inc. [http://www.rasch.org/measess/me-all.pdf].

Young, J. J., & Williams, P. F. (2010, August). Sorting and comparing: Standard-setting and “ethical” categories. Critical Perspectives on Accounting, 21(6), 509-521.

An Entrepreneurial Investment Model Alternative to Picketty’s Taxation Approach to Eliminating Wealth Disparities

May 14, 2014

Is taxation the only or the best solution to inequality? The way discussions of wealth disparities inevitably focus on variations in how, whom or what to tax, it is easy to assume there are no viable alternatives to taxation. But if the point is to invest in those with the most potential for making significant gains in productivity, so as to maximize the returns we realize, do we not wrongly constrain the domain of possible solutions when we misconceive an entrepreneurial problem in welfare terms?

Why can’t we require minimum levels of investment in social capital stocks and bonds offered by schools, hospitals, NGOs, etc? In human capital instruments offered by individuals? Why should not we expect those investments to be used to create new value? What supposed law of nature says it is impossible to associate new human, social and environmental value with stable and meaningful prices? And if there is such a law (such as Kenneth Arrow (1963) proposed), how can we break it? Why can’t we reconceive human and social capital stocks and flows in new ways?

There is one very good reason why we cannot now make such requirements, and it is the same reason why liberals (including me) had better become accustomed to accepting the failure of their agenda. That reason is this: social and environmental externalities. Inequality is inevitable only as long as we do not change the ways we deal with externalities. They can no longer be measured and managed in the same ways. They must be put on the books, brought into the models, measured scientifically, and traded in efficient markets. We have to invent accountability and accounting systems that harness the energy of the profit motive for the greater good—that actually grow authentic wealth and not mere money—and we have to do this far more effectively than has ever been done before.

It’s a tall order. But there are resources available to us that have not yet been introduced into the larger conversation. There are options to consider that need close study and creative experimentation. Proceeding toward the twin futilities of premature despair or unrealistic taxation will only set up another round of self-fulfilling prophecies inexorably grinding to yet another unforeseen but fully foretold disaster. Conversations about how to shape the roles, rules and institutions that make markets what they are (Miller and O’Leary, 2007) need to take place for human, social, and natural capital (Fisher and Stenner, 2011b). Indeed, those conversations are already well underway, as can be seen in the prior entries in this blog and in the sources listed below.

Arrow, K. J. (1963). Uncertainty and the welfare economics of medical care. American Economic Review, 53, 941-973.

Fisher, W. P., Jr. (2007). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009a). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009b). NIST Critical national need idea White Paper: Metrological infrastructure for human, social, and natural capital (http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology (11 pages).

Fisher, W. P., Jr. (2010a, 22 November). Meaningfulness, measurement, value seeking, and the corporate objective function: An introduction to new possibilities. Sausalito, California: LivingCapitalMetrics.com (http://ssrn.com/abstract=1713467).

Fisher, W. P. J. (2010b). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital (http://ssrn.com/abstract=2340674). Bridge to Business Postdoctoral Certification, Freeman School of Business: Tulane University.

Fisher, W. P., Jr. (2010c, June 13-16). Rasch, Maxwell’s method of analogy, and the Chicago tradition. In G. Cooper (Ed.), https://conference.cbs.dk/index.php/rasch/Rasch2010/paper/view/824. Probabilistic models for measurement in education, psychology, social science and health: Celebrating 50 years since the publication of Rasch’s Probabilistic Models. FUHU Conference Centre, Copenhagen, Denmark: University of Copenhagen School of Business.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. Journal of Applied Measurement, 12(1), 49-66.

Fisher, W. P., Jr. (2011b, Thursday, September 1). Measurement, metrology and the coordination of sociotechnical networks. In S. Bercea (Ed.), New Education and Training Methods. International Measurement Confederation (IMEKO). Jena, Germany: http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24491/ilm1-2011imeko-017.pdf.

Fisher, W. P., Jr. (2012a). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012b, May/June). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr., & Stenner, A. J. (2011a, January). Metrology for the social, behavioral, and economic sciences. http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36.

Fisher, W. P., Jr., & Stenner, A. J. (2011b, August 31 to September 2). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium. Jena, Germany: http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf.

Fisher, W. P., Jr., & Stenner, A. J. (2013a). On the potential for improved measurement in the human and social sciences. In Q. Zhang & H. Yang (Eds.), Pacific Rim Objective Measurement Symposium 2012 Conference Proceedings (pp. 1-11). Berlin, Germany: Springer-Verlag.

Fisher, W. P., Jr., & Stenner, A. J. (2013b). Overcoming the invisibility of metrology: A reading measurement network for education and the social sciences. Journal of Physics: Conference Series, 459(012024), http://iopscience.iop.org/1742-6596/459/1/012024.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-734.

Professional capital as product of human, social, and decisional capitals

April 18, 2014

Leslie Pendrill gave me a tip on a very interesting book, Professional Capital, by Michael Fullan. The author’s distinction between business capital and professional capital is somewhat akin to my distinction (Fisher, 2011) between dead and living capital. The primary point of contact between Fullan’s sense of capital and mine stems from his inclusion of social and decisional capital as crucial enhancements of human capital.

Of course, defining human capital as talent, as Fullan does, is not going to go very far toward supporting generalized management of it. Efficient markets require that capital be represented in transparent and universally available instruments (common currencies or metrics). Transparent, systematic representation makes it possible to act on capital abstractly, in laboratories, courts, and banks, without having to do anything at all with the physical resource itself. (Contrast this with socialism’s focus on controlling the actual concrete resources, and the resulting empty store shelves, unfulfilled five-year plans, pogroms and purges, and overall failure.) Universally accessible transparent representations make capital additive (amounts can be accrued), divisible (it can be divided into shares), and mobile (it can be moved around in networks accepting the currency/metric). (See references below for more information.)

Fullan cites research by Carrie Leanna at the U of Pittsburgh showing that teachers with high social capital increased their students math scores by 5.7% more than teachers with low social capital. The teachers with the highest skill levels (most human capital) and high social capital did the overall best. Low-ability teachers in schools with high social capital did as well as average teachers.

This is great, but the real cream of Fullan’s argument concerns the importance of what he calls decisional capital. I don’t think this will likely work out to be entirely separate from human capital, but his point is well taken: the capacity to consistently engage with students with competence, good judgment, insight, inspiration, creative improvisation, and openness to feedback in a context of shared responsibility is vital. All of this is quite consistent with recent work on collective intelligence (Fischer, Giaccardi, Eden, et al., 2005; Hutchins, 2010; Magnus, 2007; Nersessian, 2006; Woolley, Chabris, Pentland, et al., 2010; Woolley and Fuchs, 2011).

And, of course, you can see this coming: decisional capital is precisely what better measurement provides. Integrated formative and summative assessment informs decision making at the individual level in ways that are otherwise impossible. When those assessments are expressed in uniformly interpretable and applicable units of measurement, collective intelligence and social capital are boosted in the ways documented by Leanna as enhancing teacher performance and boosting student outcomes.

Anyway, just wanted to share that. It fits right in with the trading zone concept I presented at IOMW (the slides are available on my LinkedIn page).

Fischer, G., Giaccardi, E., Eden, H., Sugimoto, M., & Ye, Y. (2005). Beyond binary choices: Integrating individual and social creativity. International Journal of Human-Computer Studies, 63, 482-512.

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2003). Measurement and communities of inquiry. Rasch Measurement Transactions, 17(3), 936-938 [http://www.rasch.org/rmt/rmt173.pdf].

Fisher, W. P., Jr. (2004a, Thursday, January 22). Bringing capital to life via measurement: A contribution to the new economics. In R. Smith (Chair), Session 3.3B. Rasch Models in Economics and Marketing. Second International Conference on Measurement. Perth, Western Australia:  Murdoch University.

Fisher, W. P., Jr. (2004b, Friday, July 2). Relational networks and trust in the measurement of social capital. Twelfth International Objective Measurement Workshops. Cairns, Queensland, Australia: James Cook University.

Fisher, W. P., Jr. (2005a). Daredevil barnstorming to the tipping point: New aspirations for the human sciences. Journal of Applied Measurement, 6(3), 173-179.

Fisher, W. P., Jr. (2005b, August 1-3). Data standards for living human, social, and natural capital. In Session G: Concluding Discussion, Future Plans, Policy, etc. Conference on Entrepreneurship and Human Rights. Pope Auditorium, Lowenstein Bldg, Fordham University.

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2008a, 3-5 September). New metrological horizons: Invariant reference standards for instruments measuring human, social, and natural capital. 12th IMEKO TC1-TC7 Joint Symposium on Man, Science, and Measurement. Annecy, France: University of Savoie.

Fisher, W. P., Jr. (2008b, March 28). Rasch, Frisch, two Fishers and the prehistory of the Separability Theorem. In J. William P. Fisher (Ed.), Session 67.056. Reading Rasch Closely: The History and Future of Measurement. American Educational Research Association. New York City [Paper available at SSRN: http://ssrn.com/abstract=1698919%5D: Rasch Measurement SIG.

Fisher, W. P., Jr. (2009a, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009b). NIST Critical national need idea White Paper: Metrological infrastructure for human, social, and natural capital (http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology (11 pages).

Fisher, W. P., Jr. (2010a, 22 November). Meaningfulness, measurement, value seeking, and the corporate objective function: An introduction to new possibilities. Sausalito, California: LivingCapitalMetrics.com (http://ssrn.com/abstract=1713467).

Fisher, W. P. J. (2010b). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital (p. http://ssrn.com/abstract=2340674). Bridge to Business Postdoctoral Certification, Freeman School of Business: Tulane University.

Fisher, W. P., Jr. (2010c). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics: Conference Series, 238(1), http://iopscience.iop.org/1742-6596/238/1/012016/pdf/1742-6596_238_1_012016.pdf.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2011b). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com [Online]. Available: http://ssrn.com/abstract=1739386 (Accessed 18 January 2011).

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr., & Stenner, A. J. (2005, Tuesday, April 12). Creating a common market for the liberation of literacy capital. In R. E. Schumacker (Ed.), Rasch Measurement: Philosophical, Biological and Attitudinal Impacts. American Educational Research Association. Montreal, Canada: Rasch Measurement SIG.

Fisher, W. P., Jr., & Stenner, A. J. (2011a, January). Metrology for the social, behavioral, and economic sciences. Available: http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36 (Accessed 12 January 2014).

Fisher, W. P., Jr., & Stenner, A. J. (2011b, August 31 to September 2). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium. Jena, Germany: http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf.

Hutchins, E. (2010). Cognitive ecology. Topics in Cognitive Science, 2, 705-715.

Magnus, P. D. (2007). Distributed cognition and the task of science. Social Studies of Science, 37(2), 297-310.

Nersessian, N. J. (2006, December). Model-based reasoning in distributed cognitive systems. Philosophy of Science, pp. 699-709.

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010, 29 October). Evidence for a collective intelligence factor in the performance of human groups. Science, pp. 686-688.

Woolley, A. W., & Fuchs, E. (2011, September-October). Collective intelligence in the organization of science. Organization Science, pp. 1359-1367.

Dispelling Myths about Measurement in Psychology and the Social Sciences

August 27, 2013

Seven common assumptions about measurement and method in psychology and the social sciences stand as inconsistent anomalies in the experience of those who have taken the trouble to challenge them. As evidence, theory, and instrumentation accumulate, will we see a revolutionary break and disruptive change across multiple social and economic levels and areas as a result? Will there be a slower, more gradual transition to a new paradigm? Or will the status quo simply roll on, oblivious to the potential for new questions and new directions? We shall see.

1. Myth: Qualitative data and methods cannot really be integrated with quantitative data and methods because of opposing philosophical assumptions.

Fact: Qualitative methods incorporate a critique of quantitative methods that leads to a more scientific theory and practice of measurement.

2. Myth: Statistics is the logic of measurement.

Fact: Statistics did not emerge as a discipline until the 19th century, while measurement, of course, has been around for millennia. Measurement is modeled at the individual level within a single variable whereas statistics model at the population level between variables. Data are fit to prescriptive measurement models using the Garbage-In, Garbage-Out (GIGO) Principle, while descriptive statistical models are fit to data.

3. Myth: Linear measurement from ordinal test and survey data is impossible.

Fact: Ordinal data have been used as a basis for invariant linear measures for decades.

4. Myth: Scientific laws like Newton’s laws of motion cannot be successfully formulated, tested, or validated in psychology and the social sciences.

Fact: Mathematical laws of human behavior and cognition in the same form as Newton’s laws are formulated, tested, and validated in numerous Rasch model applications.

5. Myth: Experimental manipulations of psychological and social phenomena are inherently impossible or unethical.

Fact: Decades of research across multiple fields have successfully shown how theory-informed interventions on items/indicators/questions can result in predictable, consistent, and substantively meaningful quantitative changes.

6. Myth: “Real” measurement is impossible in psychology and the social sciences.

Fact: Success in predictive theory, instrument calibration, and in maintaining stable units of comparison over time are all evidence supporting the viability of meaningful uniform units of measurement in psychology and the social sciences.

7. Myth: Efficient economic markets can incorporate only manufactured and liquid capital, and property. Human, social, and natural capital, being intangible, have permanent status as market externalities as they cannot be measured well enough to enable accountability, pricing, or transferable representations (common currency instruments).

Fact: The theory and methods necessary for establishing an Intangible Assets Metric System are in hand. What’s missing is the awareness of the scientific, human, social, and economic value that would be returned from the admittedly very large investments that would be required.

References and examples are available in other posts in this blog, in my publications, or on request.

Innovation Infrastructure as a Basis for a New Political Framework

April 5, 2013

The central innovation issue is this:  innovation suffers because we cannot efficiently tap the network (wisdom of crowds) effects of our collective decisions and behaviors in education, health care, social services, the work force, and environmental resource management.

Big-picture innovation hinges on the truth in the maxim “You manage what you measure,” and get this: we don’t have a metric system for 90% of the capital under management. That capital is the human, social, and natural capital that makes manufactured capital and property economically viable in the first place. Without an intangible assets metric system, we cannot align and coordinate value decisions in the most important areas of our lives.

So, as I’ve said ad nauseum here, what we need to do is focus on designing, implementing, and managing a human, social, and natural capital intangible assets metric system, with the cooperation of local firms, nonprofits and state/federal grants.

Society as a whole has to invest in an intangible assets metric system. Such systems benefit everyone and are so expensive that no individual, firm, or industry has the resources needed to do the job.

And quite apart from the expense, providing this infrastructure fits squarely with the mission of democratic government for, by, and of the people. The fairness of our measures is something we take for granted as evidence of our socially just relations: they show what we value.

I am convinced that a huge proportion of our human, social, and environmental problems today stem from the complete absence of a meaningful, scientific, and universally uniform system for measuring genuine wealth on the ground at the individual level in classrooms, clinics, offices, social services agencies, watersheds, fisheries, forests, etc. And here is where we get to something really interesting in the way of consequences.

Conservative political forces have long sought to reduce the size of government, to run government like a business, and to allow market forces to provide for the general social welfare. The proposals, of course, do not tend to include any specific means for addressing human suffering, social inequities, and environmental degradation. And on those occasions when the vision is implemented, market forces fail spectacularly to provide what’s needed.

Those failures are inevitable as long as we do not have scientific and meaningful ways of measuring and managing human, social, and environmental impacts. But when we do finally create an intangible assets metric system—and I am convinced we inevitably will—a foundation will be laid for a resolution of today’s political logjams. Universally uniform and comparable impact metrics are a key element in efficient markets. Efficient markets for human, social, and natural capital will relieve government of the burden it experiences in managing these assets directly.

In this scenario, both sides win. Liberals see how to make profits contingent on the growth of intangible, genuine wealth, and conservatives see how to reduce the size of government and run it more like a business. I am convinced this is how we will cut the Gordian knot of our current debacle.

An intangible assets metric system has been technically feasible for decades and is, of course, only one element in the larger context that will be needed to promote and realize new heights in sustainability innovations. For more on my thoughts in this area, see my 2011 World Standards Day prize paper, or my NIST and NSF White Papers.

What the Economy Needs?

September 5, 2012

Expanding on remarks made by Thomas Friedman in the course of an interview with Charlie Rose broadcast on August 31, 2012…

Friedman broke the problem down to three key points. We have to have 1) a plan, 2) a fair tax contribution from the rich, and 3) aspirations for improving the overall quality of life, economically and  democratically.

The plan outlined from various points of view in this blog is to create a scientific and market infrastructure for intangible assets (human, social and natural capital), assets amounting to at least 90%of the capital under management.

The plan is fair in its advancement of equal opportunity to invest in and realize returns from one’s skills, motivations, health and trustworthiness. Everyone will be able to invest in, and receive their share of the profits from, the human, social, and natural capital stocks of individuals, communities, schools, hospitals, social service agencies, firms, etc. The rich will then both contribute to the advancement of the greater good at the same time they are able to profit from the growth in the authentic wealth created by improvements to human, community, and environmental value.

The plan aspires to great accomplishments in the depth and breadth of the innovation it will facilitate, its fulfillment of democratic principles, and the new economic growth it promises.

And so I would now like to raise a couple of sets of questions. What if all the money put into Medicare, Medicaid, education, HUD, food stamps, the EPA, etc. was instead invested in an infrastructure for intangible assets metrology and HSN capital stocks (individual, organizational–school, hospital, nonprofit, NGO, firm–and community)? Usually, talk of letting the market solve social and environmental problems is nothing but a self-serving excuse for allowing greed to rule at the expense of the greater good. Those so-called market solutions do nothing to actually shape the institutions, rules, and roles by which markets are created, and so the end result would be catastrophic. But there is an essential and unnoticed inconsistency in previously proposed approaches that involves the double standards used in defining and actualizing the various forms of capital.

As previous posts (like this one or this one) in this blog, and several of my publications, have argued, manufactured capital and property have long since been brought to life by transferable representations (titles, deeds, precision quantity measures, etc.) and the various legal, financial, educational, and scientific institutions built up around them. Human, social, and natural capital have not been brought to life and so we remain unable to take proper possession of our own properties, the ones that we most value and on which life, liberty, and happiness are most dependent.

But what if we created the needed market institutions, rules, and roles? What if everyone knew how many shares of community capital they owned, and what the current price of those shares in the market was? What if tuition for an advanced degree was denominated in the shares of literacy capital one obtained, as evident in the increased literacy measures achieved? What if taxes were abolished and minimum investments in human, social, and natural capital stocks were required? What if real, efficient, functional markets in intangible assets were created, and the associated governmental programs and departments were abolished? How much would the federal budget decrease? How much would government shrink? How much might the economy grow if that much money was invested in human, social, and natural capital stocks paying even a minimal reasonable profit?

Another round of questions asks whether we have the optimal social safety net in the current institutional context, or if perhaps that safety net could be significantly improved by following through on the concepts of impact investing and outcome-based budgeting to create a truly sustainable and socially responsible economic system? What if everyone held known numbers of tradable shares of their intangible assets (their skills, motivation, health, trust)? What if the value of those shares was common public knowledge? What if the investment paths to increasing the number and value of shares held were all well known? What if monetary profit could be derived–and could only be derived–by increasing the value of human, social, and natural capital shares? What if groups of people joined together in various kinds of organizations (schools, hospitals, businesses) to collectively grow the value of their authentic wealth? What if lean thinking was applied to the 90% of the capital under management (the human, social, and natural capital) that is currently nearly unmanageable because it is not measured in universally uniform scientific units?

The balance scale is a common symbol of justice. We do not usually aspire to take that symbol as seriously as we could. We ought to have a plan for economic justice that does not have to coerce anyone to acknowledge, pay back, and re-invest in the broad support they received en route to becoming successful. And we ought to have a plan that reinvigorates the aspirations for equal opportunity and freedom that have become a model for people all over the world. Friedman got the broad strokes right. Now’s the time to start filling in the details.

Comments on the New ANSI Human Capital Investor Metrics Standard

April 16, 2012

The full text of the proposed standard is available here.

It’s good to see a document emerge in this area, especially one with such a broad base of support from a diverse range of stakeholders. As is stated in the standard, the metrics defined in it are a good place to start and in many instances will likely improve the quality and quantity of the information made available to investors.

There are several issues to keep in mind as the value of standards for human capital metrics becomes more widely appreciated. First, in the context of a comprehensively defined investment framework, human capital is just one of the four major forms of capital, the other three being social, natural, and manufactured (Ekins, 1992; Ekins, Dresden, and Dahlstrom, 2008). To ensure as far as possible the long term stability and sustainability of their profits, and of the economic system as a whole, investors will certainly want to expand the range of the available standards to include social and natural capital along with human capital.

Second, though we manage what we measure, investment management is seriously compromised by having high quality scientific measurement standards only for manufactured capital (length, weight, volume, temperature, energy, time, kilowatts, etc.). Over 80 years of research on ability tests, surveys, rating scales, and assessments has reached a place from which it is prepared to revolutionize the management of intangible forms of capital (Fisher, 2007, 2009a, 2009b, 2010, 2011a, 2011b; Fisher & Stenner, 2011a, 2011b; Wilson, 2011; Wright, 1999). The very large reductions in transaction costs effected by standardized metrics in the economy at large (Barzel, 1982; Benham and Benham, 2000) are likely to have a similarly profound effect on the economics of human, social, and natural capital (Fisher, 2011a, 2012a, 2012b).

The potential for dramatic change in the conceptualization of metrics is most evident in the proposed standard in the sections on leadership quality and employee engagement. For instance, in the section on leadership quality, it is stated that “Investors will be able to directly compare all organizations that are using the same vendor’s methodology.” This kind of dependency should not be allowed to stand as a significant factor in a measurement standard. Properly constructed and validated scientific measures, such as those that have been in wide use in education, psychology and health care for several decades (Andrich, 2010; Bezruzcko, 2005; Bond and Fox, 2007; Fisher and Wright, 1994; Rasch, 1960; Salzberger, 2009; Wright, 1999), are equated to a common unit. Comparability should never depend on which vendor is used. Rather, any instrument that actually measures the construct of interest (leadership quality or employee engagement) should do so in a common unit and within an acceptable range of error. “Normalizing” measures for comparability, as is suggested in the standard, means employing psychometric methods that are 50 years out of date and that are far less rigorous and practical than need be. Transparency in measurement means looking through the instrument to the thing itself. If particular instruments color or reshape what is measured, or merely change the meaning of the numbers reported, then the integrity of the standard as a standard should be re-examined.

Third, for investments in human capital to be effectively managed, each distinct aspect of it (motivations, skills and abilities, health) needs to be measured separately, just as height, weight, and temperature are. New technologies have already transformed measurement practices in ways that make the necessary processes precise and inexpensive. Of special interest are adaptively administered precalibrated instruments supporting mass customized—but globally comparable—measures (for instance, see the examples at http://blog.lexile.com/tag/oasis/ and that were presented at the recent Pearson Global Research Conference in Fremantle, Australia http://www.pearson.com.au/marketing/corporate/pearson_global/default.html; also see Wright and Bell 1984, Lunz, Bergstrom, and Gershon, 1994, Bejar, et al., 2003).

Fourth, the ownership of human capital needs clarification and legal status. If we consider each individual to own their abilities, health, and motivations, and to be solely responsible for decisions made concerning the disposition of those properties, then, in accord with their proven measured amounts of each type of human capital, everyone ought to have legal title to a specific number of shares or credits of each type. This may transform employment away from wage-based job classification compensation to an individualized investment-based continuous quality improvement platform. The same kind of legal titling system will, of course, need to be worked out for social and natural capital, as well.

Fifth, given scientific standards for each major form of capital, practical measurement technologies, and legal title to our shares of capital, we will need expanded financial accounting standards and tools for managing our individual and collective investments. Ongoing research and debates concerning these standards and tools (Siegel and Borgia, 2006; Young and Williams, 2010) have yet to connect with the larger scientific, economic, and legal issues raised here, but developments in this direction should be emerging in due course.

Sixth, a number of lingering moral, ethical and political questions are cast in a new light in this context. The significance of individual behaviors and decisions is informed and largely determined by the context of the culture and institutions in which those behaviors and decisions are executed. Many of the morally despicable but not illegal investment decisions leading to the recent economic downturn put individuals in the position of either setting themselves apart and threatening their careers or doing what was best for their portfolios within the limits of the law. Current efforts intended to devise new regulatory constraints are misguided in focusing on ever more microscopically defined particulars. What is needed is instead a system in which profits are contingent on the growth of human, social, and natural capital. In that framework, legal but ultimately unfair practices would drive down social capital stock values, counterbalancing ill-gotten gains and making them unprofitable.

Seventh, the International Vocabulary of Measurement, now in its third edition (VIM3), is a standard recognized by all eight international standards accrediting bodies (BIPM, etc.). The VIM3 (http://www.bipm.org/en/publications/guides/vim.html) and forthcoming VIM4 are intended to provide a uniform set of concepts and terms for all fields that employ measures across the natural and social sciences. A new dialogue on these issues has commenced in the context of the International Measurement Confederation (IMEKO), whose member organizations are the weights and standards measurement institutes from countries around the world (Conference note, 2011). The 2012 President of the Psychometric Society, Mark Wilson, gave an invited address at the September 2011 IMEKO meeting (Wilson, 2011), and a member of the VIM3 editorial board, Luca Mari, is invited to speak at the July, 2012 International Meeting of the Psychometric Society. I encourage all interested parties to become involved in efforts of these kinds in their own fields.

References

Andrich, D. (2010). Sufficiency and conditional estimation of person parameters in the polytomous Rasch model. Psychometrika, 75(2), 292-308.

Barzel, Y. (1982). Measurement costs and the organization of markets. Journal of Law and Economics, 25, 27-48.

Bejar, I., Lawless, R. R., Morley, M. E., Wagner, M. E., Bennett, R. E., & Revuelta, J. (2003, November). A feasibility study of on-the-fly item generation in adaptive testing. The Journal of Technology, Learning, and Assessment, 2(3), 1-29; http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1663.

Benham, A., & Benham, L. (2000). Measuring the costs of exchange. In C. Ménard (Ed.), Institutions, contracts and organizations: Perspectives from new institutional economics (pp. 367-375). Cheltenham, UK: Edward Elgar.

Bezruczko, N. (Ed.). (2005). Rasch measurement in health sciences. Maple Grove, MN: JAM Press.

Bond, T., & Fox, C. (2007). Applying the Rasch model: Fundamental measurement in the human sciences, 2d edition. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Conference note. (2011). IMEKO Symposium: August 31- September 2, 2011, Jena, Germany. Rasch Measurement Transactions, 25(1), 1318.

Ekins, P. (1992). A four-capital model of wealth creation. In P. Ekins & M. Max-Neef (Eds.), Real-life economics: Understanding wealth creation (pp. 147-155). London: Routledge.

Ekins, P., Dresner, S., & Dahlstrom, K. (2008). The four-capital method of sustainable development evaluation. European Environment, 18(2), 63-80.

Fisher, W. P., Jr. (2007). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-3 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009a). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P.. Jr. (2009b). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology.

Fisher, W. P.. Jr. (2010). Rasch, Maxwell’s method of analogy, and the Chicago tradition. In G. Cooper (Chair), https://conference.cbs.dk/index.php/rasch/Rasch2010/paper/view/824. Probabilistic models for measurement in education, psychology, social science and health: Celebrating 50 years since the publication of Rasch’s Probabilistic Models.., University of Copenhagen School of Business, FUHU Conference Centre, Copenhagen, Denmark.

Fisher, W. P., Jr. (2011a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2011b). Measurement, metrology and the coordination of sociotechnical networks. In  S. Bercea (Chair), New Education and Training Methods. International Measurement Confederation (IMEKO), http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24491/ilm1-2011imeko-017.pdf, Jena, Germany.

Fisher, W. P., Jr. (2012a). Measure local, manage global: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. in press). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012b). What the world needs now: A bold plan for new standards. Standards Engineering, 64, in press.

Fisher, W. P., Jr., & Stenner, A. J. (2011a). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series). Retrieved 25 October 2011, from National Science Foundation: http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36.

Fisher, W. P., Jr., & Stenner, A. J. (2011b). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium, http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf, Jena, Germany.

Fisher, W. P., Jr., & Wright, B. D. (Eds.). (1994). Applications of probabilistic conjoint measurement. International Journal of Educational Research, 21(6), 557-664.

Lunz, M. E., Bergstrom, B. A., & Gershon, R. C. (1994). Computer adaptive testing. International Journal of Educational Research, 21(6), 623-634.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Salzberger, T. (2009). Measurement in marketing research: An alternative framework. Northampton, MA: Edward Elgar.

Siegel, P., & Borgia, C. (2006). The measurement and recognition of intangible assets. Journal of Business and Public Affairs, 1(1).

Wilson, M. (2011). The role of mathematical models in measurement: A perspective from psychometrics. In L. Mari (Chair), Plenary lecture. International Measurement Confederation (IMEKO), http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24178/ilm1-2011imeko-005.pdf, Jena, Germany.

Wright, B. D. (1999). Fundamental measurement for psychology. In S. E. Embretson & S. L. Hershberger (Eds.), The new rules of measurement: What every educator and psychologist should know (pp. 65-104 [http://www.rasch.org/memo64.htm]). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Wright, B. D., & Bell, S. R. (1984, Winter). Item banks: What, why, how. Journal of Educational Measurement, 21(4), 331-345 [http://www.rasch.org/memo43.htm].

Young, J. J., & Williams, P. F. (2010, August). Sorting and comparing: Standard-setting and “ethical” categories. Critical Perspectives on Accounting, 21(6), 509-521.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.