Archive for June, 2011

Translating Gingrich’s Astute Observations on Health Care

June 30, 2011

“At the very heart of transforming health and healthcare is one simple fact: it will require a commitment by the federal government to invest in science and discovery. The period between investment and profit for basic research is too long for most companies to ever consider making the investment. Furthermore, truly basic research often produces new knowledge that everyone can use, so there is no advantage to a particular company to make the investment. The result is that truly fundamental research is almost always a function of government and foundations because the marketplace discourages focusing research in that direction” (p. 169 in Gingrich, 2003).

Gingrich says this while recognizing (p. 185) that:

“Money needs to be available for highly innovative ‘out of the box’ science. Peer review is ultimately a culturally conservative and risk-averse model. Each institution’s director should have a small amount of discretionary money, possibly 3% to 5% of their budget, to spend on outliers.”

He continues (p. 170), with some important elaborations on the theme:

“America’s economic future is a direct function of our ability to take new scientific research and translate it into entrepreneurial development.”

“The [Hart/Rudman] Commission’s second conclusion was that the failure to invest in scientific research and the failure to reform math and science education was the second largest threat to American security [behind terrorism].”

“Our goal [in the Hart/Rudman Commission] was to communicate the centrality of the scientific endeavor to American life and the depth of crisis we believe threatens the math and science education system. The United States’ ability to lead today is a function of past investments in scientific research and math and science education. There is no reason today to believe we will automatically maintain that lead especially given our current investments in scientific research and the staggering levels of our failures in math and science education.”

“Our ability to lead in 2025 will be a function of current decisions. Increasing our investment in science and discovery is a sound and responsible national security policy. No other federal expenditure will do more to create jobs, grow wealth, strengthen our world leadership, protect our environment, promote better education, or ensure better health for the country. We must make this increase now.”

On p. 171, this essential point is made:

“In health and healthcare, it is particularly important to increase our investment in research.”

This is all good. I agree completely. What NG says is probably more true than he realizes, in four ways.

First, the scientific capital created via metrology, controlled via theory, and embodied in technological instruments is the fundamental driver of any economy. The returns on investments in metrological improvements range from 40% to over 400% (NIST, 1996). We usually think of technology and technical standards in terms of computers, telecommunications, and electronics, but there actually is not anything at all in our lives untouched by metrology, since the air, water, food, clothing, roads, buildings, cars, appliances, etc. are all monitored, maintained, and/or manufactured relative to various kinds of universally uniform standards. NG is, as most people are, completely unaware that such standards are feasible and already under development for health, functionality, quality of life, quality of care, math and science education, etc. Given the huge ROIs associated with metrological improvements, there ought to be proportionately huge investments being made in metrology for human, social, and natural capital.

Second, NG’s point concerning national security is right on the mark, though for reasons that go beyond the ones he gives. There are very good reasons for thinking investments in, and meaningful returns from, the basic science for human, social, and natural capital metrology could be expected to undercut the motivations for terrorism and the retreats into fundamentalisms of various kinds that emerge in the face of the failures of liberal democracy (Marty, 2001). Making all forms of capital measured, managed, and accountable within a common framework accessible to everyone everywhere could be an important contributing factor, emulating the property titling rationale of DeSoto (1989, 2000) and the support for distributed cognition at the social level provided by metrological networks (Latour, 1987, 2005; Magnus, 2007), The costs of measurement can be so high as to stifle whole economies (Barzel, 1982), which is, broadly speaking, the primary problem with the economies of education, health care, social services, philanthropy, and environmental management (see, for instance, regarding philanthropy, Goldberg, 2009). Building the legal and financial infrastructure for low-friction titling and property exchange has become a basic feature of World Bank and IMF projects. My point, ever since I read De Soto, has been that we ought to be doing the same thing for human, social, and natural capital, facilitating explicit ownership of the skills, motivations, health, trust, and environmental resources that are rightfully the property of each of us, and that similar effects on national security ought to follow.

Third, NG makes an excellent point when he stresses the need for health and healthcare to be individual-centered, saying that, in contrast with the 20th-century healthcare system, “In the 21st Century System of Health and Healthcare, you will own your medical record, control your healthcare dollars, and be able to make informed choices about healthcare providers.” This is basically equivalent to saying that health capital needs to be fungible, and it can’t be fungible, of course, without a metrological infrastructure that makes every measure of outcomes, quality of life, etc. traceable to a reference standard. Individual-centeredness is also, of course, what distinguishes proper measurement from statistics. Measurement supports inductive inference, from the individual to the population, where statistics are deductive, going from the population to the individual (Fisher & Burton, 2010; Fisher, 2010). Individual-centered healthcare will never go anywhere without properly calibrated instrumentation and the traceability to reference standards that makes measures meaningful.

Fourth, NG repeatedly indicates how appalled he is at the slow pace of change in healthcare, citing research showing that it can take up to 17 years for doctors to adopt new procedures. I contend that this is an effect of our micromanagement of dead, concrete forms of capital. In a fluid living capital market, not only will consumers be able to reward quality in their purchasing decisions by having the information they need when they need it and in a form they can understand, but the quality improvements will be driven from the provider side in much the same way. As Brent James has shown, readily available, meaningful, and comparable information on natural variation in outcomes makes it much easier for providers to improve results and reduce the variation in them. Despite its central importance and the many years that have passed, however, the state of measurement in health care remains in dire need of dramatic improvement. Fryback (1993, p. 271; also see Kindig, 1999) succinctly put the point, observing that the U.S.

“health care industry is a $900 + billion [over $2.5 trillion in 2009 (CMS, 2011] endeavor that does not know how to measure its main product: health. Without a good measure of output we cannot truly optimize efficiency across the many different demands on resources.”

Quantification in health care is almost universally approached using methods inadequate to the task, resulting in ordinal and scale-dependent scores that cannot take advantage of the objective comparisons provided by invariant, individual-level measures (Andrich, 2004). Though data-based statistical studies informing policy have their place, virtually no effort or resources have been invested in developing individual-level instruments traceable to universally uniform metrics that define the outcome products of health care. These metrics are key to efficiently harmonizing quality improvement, diagnostic, and purchasing decisions and behaviors in the manner described by Berwick, James, and Coye (2003) without having to cumbersomely communicate the concrete particulars of locally-dependent scores (Heinemann, Fisher, & Gershon, 2006). Metrologically-based common product definitions will finally make it possible for quality improvement experts to implement analogues of the Toyota Production System in healthcare, long presented as a model but never approached in practice (Coye, 2001).

So, what does all of this add up to? A new division for human, social, and natural capital in NIST is in order, with extensive involvement from NIH, CMS, AHRQ, and other relevant agencies. Innovative measurement methods and standards are the “out of the box” science NG refers to. Providing these tools is the definitive embodiment of an appropriate role for government. These are the kinds of things that we could have a productive conversation with NG about, it seems to me….

References

 Andrich, D. (2004, January). Controversy and the Rasch model: A characteristic of incompatible paradigms? Medical Care, 42(1), I-7–I-16.

Barzel, Y. (1982). Measurement costs and the organization of markets. Journal of Law and Economics, 25, 27-48.

Berwick, D. M., James, B., & Coye, M. J. (2003, January). Connections between quality measurement and improvement. Medical Care, 41(1 (Suppl)), I30-38.

Centers for Medicare and Medicaid Services. (2011). National health expenditure data: NHE fact sheet. Retrieved 30 June 2011, from https://www.cms.gov/NationalHealthExpendData/25_NHE_Fact_Sheet.asp.

Coye, M. J. (2001, November/December). No Toyotas in health care: Why medical care has not evolved to meet patients’ needs. Health Affairs, 20(6), 44-56.

De Soto, H. (1989). The other path: The economic answer to terrorism. New York: Basic Books.

De Soto, H. (2000). The mystery of capital: Why capitalism triumphs in the West and fails everywhere else. New York: Basic Books.

Fisher, W. P., Jr. (2010). Statistics and measurement: Clarifying the differences. Rasch Measurement Transactions, 23(4), 1229-1230 [http://www.rasch.org/rmt/rmt234.pdf].

Fisher, W. P., Jr., & Burton, E. (2010). Embedding measurement within existing computerized data systems: Scaling clinical laboratory and medical records heart failure data to predict ICU admission. Journal of Applied Measurement, 11(2), 271-287.

Fryback, D. (1993). QALYs, HYEs, and the loss of innocence. Medical Decision Making, 13(4), 271-2.

Gingrich, N. (2008). Real change: From the world that fails to the world that works. Washington, DC: Regnery Publishing.

Goldberg, S. H. (2009). Billions of drops in millions of buckets: Why philanthropy doesn’t advance social progress. New York: Wiley.

Heinemann, A. W., Fisher, W. P., Jr., & Gershon, R. (2006). Improving health care quality with outcomes management. Journal of Prosthetics and Orthotics, 18(1), 46-50 [http://www.oandp.org/jpo/library/2006_01S_046.asp].

Kindig, D. A. (1997). Purchasing population health. Ann Arbor, Michigan: University of Michigan Press.

Kindig, D. A. (1999). Purchasing population health: Aligning financial incentives to improve health outcomes. Nursing Outlook, 47, 15-22.

Latour, B. (1987). Science in action: How to follow scientists and engineers through society. New York: Cambridge University Press.

Latour, B. (2005). Reassembling the social: An introduction to Actor-Network-Theory. (Clarendon Lectures in Management Studies). Oxford, England: Oxford University Press.

Magnus, P. D. (2007). Distributed cognition and the task of science. Social Studies of Science, 37(2), 297-310.

Marty, M. (2001). Why the talk of spirituality today? Some partial answers. Second Opinion, 6, 53-64.

Marty, M., & Appleby, R. S. (Eds.). (1993). Fundamentalisms and society: Reclaiming the sciences, the family, and education. The fundamentalisms project, vol. 2. Chicago: University of Chicago Press.

National Institute for Standards and Technology. (1996). Appendix C: Assessment examples. Economic impacts of research in metrology. In Committee on Fundamental Science, Subcommittee on Research (Ed.), Assessing fundamental science: A report from the Subcommittee on Research, Committee on Fundamental Science. Washington, DC: National Standards and Technology Council

[http://www.nsf.gov/statistics/ostp/assess/nstcafsk.htm#Topic%207; last accessed 30 June 2011].

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Advertisements