Archive for the ‘complex adaptive systems’ Category

New Ideas on How to Realize the Purpose of Capital

September 20, 2018

I’d like to offer the following in reply to James Militzer, at https://nextbillion.net/deciphering-emersons-tears-time-impact-investing-lower-expectations/.

Rapid advances toward impact investing’s highest goals of social transformation are underway in quiet technical work being done in places no one is looking. That work shares Jed Emerson’s sentiments expressed at the 2017 Social Capital Markets conference, as he is quoted in Militzer’s NextBillion.net posting, that “The purpose of capital is to advance a more progressively free and just experience of life for all.” And he is correct in what Militzer reported he said the year before, that we need a “real, profound critique of current practices within financial capitalism,” one that would “require real change in our own behavior aside from adding a few funds to our portfolios here or augmenting a reporting process there.”

But the efforts he and others are making toward fulfilling that purpose and articulating that critique are incomplete, insufficient, and inadequate. Why? How? Language is the crux of the matter, and the issues involved are complex and technical. The challenge, which may initially seem simplistic or naive, is how to bring human, social, and environmental values into words. Not just any words, but meaningful words in a common language. What is most challenging is that this language, like any everyday language, has to span the range from abstract theoretical ideals to concrete local improvisations.

That means it cannot be like our current languages for expressing human, social, and environmental value. If we are going to succeed in aligning those forms of value with financial value, we have a lot of work to do.

Though there is endless talk of metrics for managing sustainable impacts, and though the importance of these metrics for making sustainability manageable is also a topic of infinite discussion, almost no one takes the trouble to seek out and implement the state of the art in measurement science. This is a crucial way, perhaps the most essential way, in which we need to criticize current practices within financial capitalism and change our behaviors. Oddly, almost no one seems to have thought of that.

That is, one of the most universally unexamined assumptions of our culture is that numbers automatically stand for quantities. People who analyze numeric data are called quants, and all numeric data analysis is referred to as quantitative. That is the case, but almost none of these quants and quantitative methods involve actually defining, modeling, identifying, evaluating, or applying an substantive unit of something real in the world that can be meaningfully represented by numbers.

There is, of course, an extensive and longstanding literature on exactly this science of measurement. It has been a topic of research, philosophy, and practical applications for at least 90 years, going back to the work of Thurstone at the University of Chicago in the 1920s. That work continued at the University of Chicago with Rasch’s visit there in 1960, with Wright’s adoption and expansion of Rasch’s theory and methods, and with the further work done by Wright’s students and colleagues in the years since.

Most importantly, over the last ten years, metrologists, the physicists and engineers who maintain and improve the SI units, the metric system, have taken note of what’s been going on in research and practice involving the approaches to measurement developed by Rasch, Wright, and their students and colleagues (for just two of many articles in this area, see here and here). The most recent developments in this new metrology include

(a) initiatives at national metrology institutes globally (Sweden and the UK, Portugal, Ukraine, among others) to investigate potentials for a new class of unit standards;

(b) a special session on this topic at the International Measurement Confederation (IMEKO) World Congress in Belfast on 5 September 2018;

(c) the Journal of Physics Conference Series proceedings of the 2016 IMEKO Joint Symposium hosted by Mark Wilson and myself at UC Berkeley;

(d) the publication of a 2017 book on Ben Wright edited by Mark Wilson and myself in Springer’s Series on Measurement Science and Technology; and

(e) the forthcoming October 2018 special issue of Elsevier’s Measurement journal edited by Wilson and myself, and a second one currently in development.

There are profound differences between today’s assumptions about measurement and how a meaningful art and science of precision measurement proceeds. What passes for measurement in today’s sustainability economics and accounting are counts, percentages, and ratings. These merely numeric metrics do not stand for anything that adds up the way they do. In fact, it’s been repeatedly demonstrated over many years that these kinds of metrics measure in a unit that changes size depending on who or what is measured, who is measuring, and what tool is used to measure. What makes matters even worse is that the numbers are usually taken to be perfectly precise, as uncertainty ranges, error terms, and confidence intervals are only sporadically provided and are usually omitted.

Measurement is not primarily a matter of data analysis. Measurement requires calibrated instruments that can be read as standing for a given amount of something that stays the same, within the uncertainty range, no matter who is measuring, no matter what or who is measured, and no matter what tool is used. This is, of course, quite an accomplishment when it can be achieved, but it is not impossible and has been put to use in large scale practical ways for several decades (for instance, see here, here, and here). Universally accessible instruments calibrated to common unit standards are what make society in general, and markets in particular, efficient in the way of projecting distributed network effects, turning communities into massively parallel stochastic computers (as W. Brian Arthur put it on p. 6 of his 2014 book, Complexity Economics).

These are not unexamined assumptions or overly ideal theoretical demands. They are pragmatic ways of adapting to emergent patterns in various kinds of data that have repeatedly been showing themselves around the world for decades. Our task is to literally capitalize on these nonhuman forms of life by creating multilevel, complex ecosystems of relationships with them, letting them be what they are in ways that also let us represent ourselves to each other. (Emerson quotes Bruno Latour to this effect on page 136 in his new book, The Purpose of Capital; those familiar with my work will know I’ve been reading and citing Latour since the early 1980s).

So it seems to me that, however well-intentioned those promoting impact investing may be, there is little awareness of just how profound and sweeping the critique of current practices needs to be, or of just how much our own behaviors are going to have to change. There are, however, truly significant reasons to be optimistic and hopeful. The technical work being done in measurement and metrology points toward possibilities for extending everyday language into a pragmatic idealism that does not require caving in to either varying local circumstances or to authoritarian dictates.

The upside of the situation is that, as so often happens in the course of human history, this critique and the associated changes are likely to have that peculiar quality captured in the French expression, “plus ça change, plus c’est la même chose” (the more things change, the more they stay the same). The changes in process are transformative, but will also be recognizable repetitions of human scale patterns.

In sum, what we are doing is tuning the instruments of the human, social, and environmental sciences to better harmonize relationships. Just as jazz, folk, and world music show that creative improvisation is not constrained by–but is facilitated by–tuning standards and high tech solutions, so, too, can we make that the case in other areas.

For instance, in my presentation at the IMEKO World Congress in Belfast on 5 September, I showed that the integration of beauty and meaning we have within our grasp reiterates principles that date back to Plato. The aesthetics complement the mathematics, with variations on the same equations being traceable from the Pythagorean theorem to Newton’s laws to Rasch’s models for measurement (see, for instance, Fisher & Stenner, 2013). In many ways, the history of science and philosophy continues to be a footnote to Plato.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

 

Advertisements

Revisiting Hayek’s Relevance to Measurement

May 31, 2018

As so often happens, I’m finding new opportunities for restating what seems obvious to me but does not impact others in the way it ought to. The work of the Austrian economist Friedrich Hayek speaks to me in a particular way that has always, to me, self-evidently expressed ideas of fundamental value and interest. Reviewing his work again lately has opened it up to a new level of detail that is worth sharing here.

Hayek (1948, p. 54) is onto a key point about measurement and its role in economics when he says:

…the spontaneous actions of individuals will, under conditions which we can define, bring about a distribution of resources which can be understood as if it were made according to a single plan, although nobody has planned it…?

Decades of measurement research shows that individuals’ spontaneous responses to assessment and survey questions conform to one another in ways that might appear to have been centrally organized according to a single plan. But over and over again the same patterns are produced with no efforts made to guide or coerce responses that conform in that way.

The results of testing and assessment produced in educational measurement can be expressed in economic terms fitting quite well with Hayek’s observation. Student abilities, economically speaking, are human capital resources. Each student has some amount of ability that can be considered a supply of resources available for application to the demands of the challenges posed by the assessment questions. When assessment data fit a Rasch model, the supply of student abilities have spontaneously organized themselves in relation to challenging demands for that supply of abilities posed by the test questions. The invariant consistency of the data and resulting model fit has not been produced by coercing or guiding the students to respond in a particular way. Although questions can be written to vary in difficulty according to a construct theory, and though educational curricula traditionally vary in difficulty across grade levels, the patterns of growth and change that are observed are plainly not taking place as a result of anyone’s intentions or plans.

This kind of complex adaptive, self-organizing process (Fisher, 2017) describes not just the relations of student abilities and task difficulties, but also the relations of customer preferences to product features, patient health and functionality relative to disease and disability, etc. It also, of course, applies to supply and demand relative to a price (Fisher, 2015). For students, the price to be paid follows from the probability of a supply of ability meeting the demand for it posed by the challenges encountered in assessment items.

Getting back to Hayek (1948, p. 54), here we meet the relevance of the

…central question of all social sciences: How can the combination of fragments of knowledge existing in different minds bring about results which, if they were to be brought about deliberately, would require a knowledge on the part of the directing mind which no single person can possess?

Per Hayek’s point, no one student will know the answers to all of the questions posed in a test, and yet all of the students’ fragments of knowledge combine in a way that bring about results seemingly defined by a single intelligence. It is this bottom up and self-organized emergence of knowledge structures that we capture in measurement and bring into our culture, our sciences, and our economies by bringing things into words and the common languages of standardized metrics.

This spontaneous emergence of structure does not lead directly of its own accord to the creation of markets. Rather, it is vitally important to recognize, along with Miller and O’Leary (2007, p. 710) that:

Markets are not spontaneously generated by the exchange activity of buyers and sellers. Rather, skilled actors produce institutional arrangements, the rules, roles and relationships that make market exchange possible. The institutions define the market, rather than the reverse.

The institutional arrangements we need to make to create efficient markets for human, social, and natural capital will be staggeringly difficult to realize. But a point in time will come when the costs of remaining in our current cultural, political, and economic ruts will be greater, and the benefits will be lower, than the costs and benefits of investing in a new future. That time may be sooner than anyone thinks it will be.

References

Fisher, W. P., Jr. (2015). A probabilistic model of the law of supply and demand. Rasch Measurement Transactions, 29(1), 1508-1511  [http://www.rasch.org/rmt/rmt291.pdf].

Fisher, W. P., Jr. (2017). A practical approach to modeling complex adaptive flows in psychology and social science. Procedia Computer Science, 114, 165-174. Retrieved from https://doi.org/10.1016/j.procs.2017.09.027

Hayek, F. A. (1948). Individualism and economic order. Chicago: University of Chicago Press.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-734.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

A truly ambitious plan to tackle climate change 

December 3, 2015

A recent story in the NY Times asks just what a truly ambitious plan to tackle climate change would look like. Pledges of emissions cuts being made in Paris this month are projected to fall short of what is needed to solve the problem of climate change. Calls for mass mobilization on the scale of the U.S.’s entry into WWII are met with skepticism at the same time that leaders are signing on for stronger terms in the Paris agreement than their countries have agreed to.

One crucial assumption is made across the full range of the proposals for more stringent standards and innovative technologies. That assumption is that solving the problem of climate change is a matter of marshaling the will to get the job done. On the face of it, of course, it seems inane to consider something as important as will power to be part of the problem. If people don’t want to do something, how could it possibly ever get done?

But as I’ve pointed out in a number of previous posts in this blog, complex problems sometimes cannot be solved from within the conceptual framework that engendered them. We are in this situation in large part because our overall relation to the earth is based on assuming it to be a bottomless well of resources, with the only limitation being the creativity we bring to bear in tapping those resources. Though many of us, perhaps a majority, are seriously committed to reconceiving our relation to the earth in sustainable terms, practical results are nearly impossible to produce within the existing institutional framework. Our economic, legal, accounting, education, etc. systems are all set up to support a consumer ethos that hobbles and undercuts almost all efforts intended to support an alternative sustainability ethos. It is both ironic and counterproductive to formulate solutions to the problem of climate change without first changing the institutional background assumptions informing the rules, roles and responsibilities through which we conceptualize and implement those solutions.

Insight into this problem is provided by recent work on standards for sustainability accounting. It shows that, by definition, efforts targeting change in economic externalities like environmental concerns cannot be scaled up in ways that are needed. This happens simply because balancing mission and margin demands maintenance of the bottom line. Giving away the business in the name of saving the planet might be a noble gesture but it is the opposite of sustainable and more importantly does not provide a viable model for the future.

So how do we model a new kind of bottom line that balances mission and margin in a new way? A way in which institutional rules, roles and responsibilities are themselves configured into the sustainable ecological relations we need? A way in which means and ends are unified? How do we become the change we want to see? How can we mobilize an international mass movement focused on doing what needs to be done to solve the problem of climate change? What possibilities do we have for catalyzing the increasingly saturated solution of global discontent and desire for a new relation to the earth? Can natural social processes of leaderless self organizing systems be seeded and guided to fruition? What would that seeding and guidance look like?

For proposed answers to these questions and more on what a model of a truly ambitious plan to tackle climate change might look like, see other posts in this blog here, here, here, and here.

Convergence, Divergence, and the Continuum of Field-Organizing Activities

March 29, 2014

So what are the possibilities for growing out green shoots from the seeds and roots of an ethical orientation to keeping the dialogue going? What kinds of fruits might be expected from cultivating a common ground for choosing discourse over violence? What are the consequences for practice of planting this seed in this ground?

The same participant in the conversation earlier this week at Convergence XV who spoke of the peace building processes taking place around the world also described a developmental context for these issues of mutual understanding. The work of Theo Dawson and her colleagues (Dawson, 2002a, 2002b, 2004; Dawson, Fischer, and Stein, 2006) is especially pertinent here. Their comparisons of multiple approaches to cognitive and moral development have provided clear and decisive theory, evidence, and instrumentation concerning the conceptual integrations that take place in the evolution of hierarchical complexity.

Conceptual integrations occur when previously tacit, unexamined, and assumed principles informing a sphere of operations are brought into conscious awareness and are transformed into explicit objects of new operations. Developmentally, this is the process of discovery that takes place from the earliest stages of life, in utero. Organisms of all kinds mature in a process of interaction with their environments. Young children at the “terrible two” stage, for instance, are realizing that anything they can detach from, whether by throwing or by denying (“No!”), is not part of them. Only a few months earlier, the same children will have been fascinated with their fingers and toes, realizing these are parts of their own bodies, often by putting them in their mouths.

There are as many opportunities for conceptual integrations between the ages of 21 to 99 as there are between birth and 21. Developmental differences in perspectives can make for riotously comic situations, and can also lead to conflicts, even when the participants agree on more than they disagree on. And so here we arrive at a position from which we can get a grip on how to integrate convergence and divergence in a common framework that follows from the prior post’s brief description of the ontological method’s three moments of reduction, application, and deconstruction.

Image

Woolley and colleagues (Woolley, et al., 2010; Woolley and Fuchs, 2011) describe a continuum of five field-organizing activities categorizing the types of information needed for effective collective intelligence (Figure 1). Four of these five activities (defining, bounding, opening, and bridging) vary in the convergent versus divergent processes they bring to bear in collective thinking. Defining and bounding are convergent processes that inform judgment and decision making. These activities are especially important in the emergence of a new field or organization, when the object of interest and the methods of recognizing and producing it are in contention. Opening and bridging activities, in contrast, diverge from accepted definitions and transgress boundaries in the creative process of pushing into new areas. Undergirding the continuum as a whole is the fifth activity, grounding, which serves as a theory- and evidence-informed connection to meaningful and useful results.

There are instances in which defining and bounding activities have progressed to the point that the explanatory power of theory enables the calibration of test items from knowledge of the component parts included in those items. The efficiencies and cost reductions gained from computer-based item generation and administration are significant. Research in this area takes a variety of approaches; for more information, see Daniel and Embretson (2010), DeBoeck and Wilson (2004), Stenner, et al. (2013), and others.

The value of clear definitions and boundaries in this context stems in large part from the capacity to identify exceptions that prove (test) the rules, and that then also provide opportunities for opening and bridging. Kuhn (1961, p. 180; 1977, p. 205) noted that

To the extent that measurement and quantitative technique play an especially significant role in scientific discovery, they do so precisely because, by displaying significant anomaly, they tell scientists when and where to look for a new qualitative phenomenon.

Rasch (1960, p. 124) similarly understood that “Once a law has been established within a certain field then the law itself may serve as a tool for deciding whether or not added stimuli and/or objects belong to the original group.” Rasch gives the example of mechanical force applied to various masses with resulting accelerations, introducing idea that one of the instruments might exert magnetic as well as mechanical force, with noticeable effects on steel masses, but not on wooden masses. Rasch suggests that exploration of these anomalies may result in the discovery of other similar instruments that vary in the extent to which they also exert the new force, with the possible consequence of discovering a law of magnetic attraction.

There has been an intense interest in the assessment of divergent inconsistencies in measurement research and practice following in the wake of Rasch’s early work in psychological and social measurement (examples from a very large literature in this area include Karabatsos and Ulrich, 2002, and Smith and Plackner, 2009). Andrich, for instance, makes explicit reference to Kuhn (1961), saying, “…the function of a model for measurement…is to disclose anomalies, not merely to describe data” (Andrich, 2002, p. 352; also see Andrich, 1996, 2004, 2011). Typical software for applying Rasch models (Andrich, et al., 2013; Linacre, 2011, 2013; Wu, et al., 2007) thus accordingly provides many more qualitative numbers evaluating potential anomalies than quantitative measuring numbers. These qualitative numbers (digits that do not stand for something substantive that adds up in a constant unit) include uncertainty and confidence indicators that vary with sample size; mean square and standardized model fit statistics; and principal components analysis factor loadings and eigenvalues.

The opportunities for divergent openings onto new qualitative phenomena provided by data consistency evaluations are complemented in Rasch measurement by a variety of bridging activities. Different instruments intended to measure the same or closely related constructs may often be equated or co-calibrated, so they measure in a common unit (among many publications in this area, see Dawson, 2002a, 2004; Fisher, 1997; Fisher, et al., 1995; Massof and Ahmadian, 2007; Smith and Taylor, 2004). Similarly, the same instrument calibrated on different samples from the same population may exhibit consistent properties across those samples, offering further evidence of a potential for defining a common unit (Fisher, 1999).

Other opening and bridging activities include capacities (a) to drop items or questions from a test or survey, or to add them; (b) to adaptively administer subsets of custom-selected items from a large bank; and (c) to adjust measures for the leniency or severity of judges assigning ratings, all of which can be done, within the limits of the relevant definitions and boundaries, without compromising the unit of comparison. For methodological overviews, see Bond and Fox (2007), Wilson (2005), and others.

The various field-organizing activities spanning the range from convergence to divergence are implicated not only in research on collective thinking, but also in the history and philosophy of science. Galison and colleagues (Galison, 1997, 1999; Galison and Stump, 1996) closely examine positivist and antipositivist perspectives on the unity of science, finding their conclusions inconsistent with the evidence of history. A postpositivist perspective (Galison, 1999, p. 138), in contrast, finds “distinct communities and incommensurable beliefs” between and often within the areas of theory, experiment, and instrument-making. But instead of finding these communities “utterly condemned to passing one another without any possibility of significant interaction,” Galison (1999, p. 138) observes that “two groups can agree on rules of exchange even if they ascribe utterly different significance to the objects being exchanged; they may even disagree on the meaning of the exchange process itself.” In practice, “trading partners can hammer out a local coordination despite vast global differences.”

In accord with Woolley and colleagues’ work on convergent and divergent field-organizing activities, Galison (1999, p. 137) concludes, then, that “science is disunified, and—against our first intuitions—it is precisely the disunification of science that underpins its strength and stability.” Galison (1997, pp. 843-844) concludes with a section entitled “Cables, Bricks, and Metaphysics” in which the postpositivist disunity of science is seen to provide its unexpected coherence from the simultaneously convergent and divergent ways theories, experiments, and instruments interact.

But as Galison recognizes, a metaphor based on the intertwined strands in a cable is too mechanical to support the dynamic processes by which order arises from particular kinds of noise and chaos. Not cited by Galison is a burgeoning literature on the phenomenon of noise-induced order termed stochastic resonance (Andò  and Graziani 2000, Benzi, et al., 1981; Dykman and McClintock, 1998; Fisher, 1992, 2011; Hess and Albano, 1998; Repperger and Farris, 2010). Where the metaphor of a cable’s strands breaks down, stochastic resonance provides multiple ways of illustrating how the disorder of finite and partially independent processes can give rise to an otherwise inaccessible order and structure.

Stochastic resonance involves small noisy signals that can be amplified to have very large effects. The noise has to be of a particular kind, and too much of it will drown out rather than amplify the effect. Examples include the interaction of neuronal ensembles in the brain (Chialvo, Lontin, and Müller-Gerking, 1996), speech recognition (Moskowitz and Dickinson, 2002), and perceptual interpretation (Rianni and Simonotto, 1994). Given that Rasch’s models for measurement are stochastic versions of Guttman’s deterministic models (Andrich, 1985), the question has been raised as to how Rasch’s seemingly weaker assumptions could lead to a measurement model that is stronger than Guttman’s (Duncan, 1984, p. 220). Stochastic resonance may provide an essential clue to this puzzle (Fisher, 1992, 2011).

Another description of what might be a manifestation of stochastic resonance akin to that brought up by Galison arises in Berg and Timmermans’ (2000, p. 56) study of the constitution of universalities in a medical network. They note that, “Paradoxically, then, the increased stability and reach of this network was not due to more (precise) instructions: the protocol’s logistics could thrive only by parasitically drawing upon its own disorder.” Much the same has been said about the behaviors of markets (Mandelbrot, 2004), bringing us back to the topic of the day at Convergence XV earlier this week. I’ll have more to say on this issue of universalities constituted via noise-induced order in due course.

References

Andò, B., & Graziani, S. (2000). Stochastic resonance theory and applications. New York: Kluwer Academic Publishers.

Andrich, D. (1985). An elaboration of Guttman scaling with Rasch models for measurement. In N. B. Tuma (Ed.), Sociological methodology 1985 (pp. 33-80). San Francisco, California: Jossey-Bass.

Andrich, D. (1996). Measurement criteria for choosing among models with graded responses. In A. von Eye & C. Clogg (Eds.), Categorical variables in developmental research: Methods of analysis (pp. 3-35). New York: Academic Press, Inc.

Andrich, D. (2002). Understanding resistance to the data-model relationship in Rasch’s paradigm: A reflection for the next generation. Journal of Applied Measurement, 3(3), 325-359.

Andrich, D. (2004, January). Controversy and the Rasch model: A characteristic of incompatible paradigms? Medical Care, 42(1), I-7–I-16.

Andrich, D. (2011). Rating scales and Rasch measurement. Expert Reviews in Pharmacoeconomics Outcome Research, 11(5), 571-585.

Andrich, D., Lyne, A., Sheridan, B., & Luo, G. (2013). RUMM 2030: Rasch unidimensional models for measurement. Perth, Australia: RUMM Laboratory Pty Ltd [www.rummlab.com.au].

Benzi, R., Sutera, A., & Vulpiani, A. (1981). The mechanism of stochastic resonance. Journal of Physics. A. Mathematical and General, 14, L453-L457.

Berg, M., & Timmermans, S. (2000). Order and their others: On the constitution of universalities in medical work. Configurations, 8(1), 31-61.

Bond, T., & Fox, C. (2007). Applying the Rasch model: Fundamental measurement in the human sciences, 2d edition. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Chialvo, D., Longtin, A., & Müller-Gerking, J. (1996). Stochastic resonance in models of neuronal ensembles revisited [Electronic version].

Daniel, R. C., & Embretson, S. E. (2010). Designing cognitive complexity in mathematical problem-solving items. Applied Psychological Measurement, 34(5), 348-364.

Dawson, T. L. (2002a, Summer). A comparison of three developmental stage scoring systems. Journal of Applied Measurement, 3(2), 146-89.

Dawson, T. L. (2002b, March). New tools, new insights: Kohlberg’s moral reasoning stages revisited. International Journal of Behavioral Development, 26(2), 154-66.

Dawson, T. L. (2004, April). Assessing intellectual development: Three approaches, one sequence. Journal of Adult Development, 11(2), 71-85.

Dawson, T. L., Fischer, K. W., & Stein, Z. (2006). Reconsidering qualitative and quantitative research approaches: A cognitive developmental perspective. New Ideas in Psychology, 24, 229-239.

De Boeck, P., & Wilson, M. (Eds.). (2004). Explanatory item response models: A generalized linear and nonlinear approach. Statistics for Social and Behavioral Sciences). New York: Springer-Verlag.

Duncan, O. D. (1984). Notes on social measurement: Historical and critical. New York: Russell Sage Foundation.

Dykman, M. I., & McClintock, P. V. E. (1998, January 22). What can stochastic resonance do? Nature, 391(6665), 344.

Fisher, W. P., Jr. (1992, Spring). Stochastic resonance and Rasch measurement. Rasch Measurement Transactions, 5(4), 186-187 [http://www.rasch.org/rmt/rmt54k.htm].

Fisher, W. P., Jr. (1997). Physical disability construct convergence across instruments: Towards a universal metric. Journal of Outcome Measurement, 1(2), 87-113.

Fisher, W. P., Jr. (1999). Foundations for health status metrology: The stability of MOS SF-36 PF-10 calibrations across samples. Journal of the Louisiana State Medical Society, 151(11), 566-578.

Fisher, W. P., Jr. (2011). Stochastic and historical resonances of the unit in physics and psychometrics. Measurement: Interdisciplinary Research & Perspectives, 9, 46-50.

Fisher, W. P., Jr., Harvey, R. F., Taylor, P., Kilgore, K. M., & Kelly, C. K. (1995, February). Rehabits: A common language of functional assessment. Archives of Physical Medicine and Rehabilitation, 76(2), 113-122.

Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: University of Chicago Press.

Galison, P. (1999). Trading zone: Coordinating action and belief. In M. Biagioli (Ed.), The science studies reader (pp. 137-160). New York: Routledge.

Galison, P., & Stump, D. J. (1996). The disunity of science: Boundaries, contexts, and power. Palo Alto, California: Stanford University Press.

Hess, S. M., & Albano, A. M. (1998, February). Minimum requirements for stochastic resonance in threshold systems. International Journal of Bifurcation and Chaos, 8(2), 395-400.

Karabatsos, G., & Ullrich, J. R. (2002). Enumerating and testing conjoint measurement models. Mathematical Social Sciences, 43, 487-505.

Kuhn, T. S. (1961). The function of measurement in modern physical science. Isis, 52(168), 161-193. (Rpt. in T. S. Kuhn, (Ed.). (1977). The essential tension: Selected studies in scientific tradition and change (pp. 178-224). Chicago: University of Chicago Press.)

Linacre, J. M. (2011). A user’s guide to WINSTEPS Rasch-Model computer program, v. 3.72.0. Chicago, Illinois: Winsteps.com.

Linacre, J. M. (2013). A user’s guide to FACETS Rasch-Model computer program, v. 3.71.0. Chicago, Illinois: Winsteps.com.

Mandelbrot, B. (2004). The misbehavior of markets. New York: Basic Books.

Massof, R. W., & Ahmadian, L. (2007, July). What do different visual function questionnaires measure? Ophthalmic Epidemiology, 14(4), 198-204.

Moskowitz, M. T., & Dickinson, B. W. (2002). Stochastic resonance in speech recognition: Differentiating between /b/ and /v/. Proceedings of the IEEE International Symposium on Circuits and Systems, 3, 855-858.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Repperger, D. W., & Farris, K. A. (2010, July). Stochastic resonance –a nonlinear control theory interpretation. International Journal of Systems Science, 41(7), 897-907.

Riani, M., & Simonotto, E. (1994). Stochastic resonance in the perceptual interpretation of ambiguous figures: A neural network model. Physical Review Letters, 72(19), 3120-3123.

Smith, R. M., & Plackner, C. (2009). The family approach to assessing fit in Rasch measurement. Journal of Applied Measurement, 10(4), 424-437.

Smith, R. M., & Taylor, P. (2004). Equating rehabilitation outcome scales: Developing common metrics. Journal of Applied Measurement, 5(3), 229-42.

Stenner, A. J., Fisher, W. P., Jr., Stone, M. H., & Burdick, D. S. (2013, August). Causal Rasch models. Frontiers in Psychology: Quantitative Psychology and Measurement, 4(536), 1-14 [doi: 10.3389/fpsyg.2013.00536].

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010, 29 October). Evidence for a collective intelligence factor in the performance of human groups. Science, 330, 686-688.

Woolley, A. W., & Fuchs, E. (2011, September-October). Collective intelligence in the organization of science. Organization Science, 22(5), 1359-1367.

Wu, M. L., Adams, R. J., Wilson, M. R., Haldane, S.A. (2007). ACER ConQuest Version 2: Generalised item response modelling software. Camberwell: Australian Council for Educational Research.

The New Information Platform No One Sees Coming

December 6, 2012

I’d like to draw your attention to a fundamentally important area of disruptive innovations no one seems to see coming. The biggest thing rising in the world of science today that does not appear to be on anyone’s radar is measurement. Transformative potential beyond that of the Internet itself is available.

Realizing that potential will require an Intangible Assets Metric System. This system will connect together all the different ways any one thing is measured, bringing common languages for representing human, social, and economic value into play everywhere. We need these metrics on the front lines of education, health care, social services, and in human, reputation, and natural resource management, as well as in the economic models and financial spreadsheets informing policy, and in the scientific research conducted in dozens of fields.

All reading ability measures, for instance, should be transparently, inexpensively, and effortlessly expressed in a universally uniform metric, in the same way that standardized measures of weight and volume inform grocery store purchasing decisions. We have made starts at such systems for reading, writing, and math ability measures, and for health status, functionality, and chronic disease management measures. There oddly seems to be, however, little awareness of the full value that stands to be gained from uniform metrics in these areas, despite the overwhelming human, economic, and scientific value derived from standardized units in the existing economy. There has accordingly been virtually no leadership or investment in this area.

Measurement practice in business is woefully out of touch with the true paradigm shift that has been underway in psychometrics for years, even though the mantra “you manage what you measure” is repeated far and wide. In a fascinating twist, practically the only ones who notice the business world’s conceptual shortfall in measurement practice are the contrarians who observe that quantification can often be more of a distraction from management than the medium of its execution—but this is true only when measures are poorly conceived, designed, and implemented.

Demand for better measurement—measurement that reduces data volume not only with no loss of information but with the addition of otherwise unavailable interstitial information; that supports mass customized comparability for informed purchasing and quality improvement decisions; and that enables common product definitions for outcomes-based budgeting—is growing hand in hand with the spread of resilient, nimble, lean, and adaptive business models, and with the ongoing geometrical growth in data volume.

An even bigger source of demand for the features of advanced measurement is the increasing dependence of the economy on intangible assets, those forms of human, social, and natural capital that comprise 90% or more of the total capital under management. We will bring these now economically dead forms of capital to life by systematically standardizing representations of their quality and quantity. The Internet is the planetary nervous system through which basic information travels, and the Intangible Assets Metric System will be the global cerebrum, where higher order thinking takes place.

It will not be possible to realize the full potential of lean thinking in the information- and service-based economy without an Intangible Assets Metric System. Given the long-proven business value of standards and the role of measurement in management, it seems self-evident that our ongoing economic difficulties stem largely from our failure to develop and deploy an Intangible Assets Metric System providing common currencies for the exchange of authentic wealth. The future of sustainable and socially responsible business practices must surely depend extensively on universal access to flexible and practical uniform metrics for intangible assets.

Of course, for global intangible assets standards to be viable, they must be adaptable to local business demands and conditions without compromising their comparability. And that is just what is most powerfully disruptive about contemporary measurement methods: they make mass customization a reality. They’ve been doing so in computerized testing since the 1970s. Isn’t it time we started putting this technology to systematic use in a wide range of applications, from human and environmental resource management to education, health care, and social services?

A Framework for Competitive Advantage in Managing Intangible Assets

July 26, 2011

It has long been recognized that externalities like social costs could be brought into the market should ways of measuring them objectively be devised. Markets, however, do not emerge spontaneously from the mere desire to be able to buy and sell; they are, rather, the products of actors and agencies that define the rules, roles, and relationships within which transaction costs are reduced and from which value, profits, and authentic wealth may be extracted. Objective measurement is necessary to reduced transaction costs but is by itself insufficient to the making of markets. Thus, markets for intangible assets, such as human, social, and natural capital, remain inefficient and undeveloped even though scientific theories, models, methods, and results demonstrating their objective measurability have been available for over 80 years.

Why has the science of objectively measured intangible assets not yet led to efficient markets for those assets? The crux of the problem, the pivot point at which an economic Archimedes could move the world of business, has to do with verifiable trust. It may seem like stating the obvious, but there is much to be learned from recognizing that shared narratives of past performance and a shared vision of the future are essential to the atmosphere of trust and verifiability needed for the making of markets. The key factor is the level of detail reliably tapped by such narratives.

For instance, some markets seem to have the weight of an immovable mass when the dominant narrative describes a static past and future with no clearly defined trajectory of leverageable development. But when a path of increasing technical capacity or precision over time can be articulated, entrepreneurs have the time frames they need to be able to coordinate, align, and manage budgeting decisions vis a vis investments, suppliers, manufacturers, marketing, sales, and customers. For example, the building out of the infrastructure of highways, electrical power, and water and sewer services assured manufacturers of automobiles, appliances, and homes that they could develop products for which there would be ready customers. Similarly, the mapping out of a path of steady increases in technical precision at no additional cost in Moore’s Law has been a key factor enabling the microprocessor industry’s ongoing history of success.

Of course, as has been the theme of this blog since day one, similar paths for the development of new infrastructural capacities could be vital factors for making new markets for human, social, and natural capital. I’ll be speaking on this topic at the forthcoming IMEKO meeting in Jena, Germany, August 31 to September 2. Watch this spot for more on this theme in the near future.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Measurement, Metrology, and the Birth of Self-Organizing, Complex Adaptive Systems

February 28, 2011

On page 145 of his book, The Mathematics of Measurement: A Critical History, John Roche quotes Charles de La Condamine (1701-1774), who, in 1747, wrote:

‘It is quite evident that the diversity of weights and measures of different countries, and frequently in the same province, are a source of embarrassment in commerce, in the study of physics, in history, and even in politics itself; the unknown names of foreign measures, the laziness or difficulty in relating them to our own give rise to confusion in our ideas and leave us in ignorance of facts which could be useful to us.’

Roche (1998, p. 145) then explains what de La Condamine is driving at, saying:

“For reasons of international communication and of civic justice, for reasons of stability over time and for accuracy and reliability, the creation of exact, reproducible and well maintained international standards, especially of length and mass, became an increasing concern of the natural philosophers of the seventeenth and eighteenth centuries. This movement, cooperating with a corresponding impulse in governing circles for the reform of weights and measures for the benefit of society and trade, culminated in late eighteenth century France in the metric system. It established not only an exact, rational and international system of measuring length, area, volume and mass, but introduced a similar standard for temperature within the scientific community. It stimulated a wider concern within science to establish all scientific units with equal rigour, basing them wherever possible on the newly established metric units (and on the older exact units of time and angular measurement), because of their accuracy, stability and international availability. This process gradually brought about a profound change in the notation and interpretation of the mathematical formalism of physics: it brought about, for the first time in the history of the mathematical sciences, a true union of mathematics and measurement.”

As it was in the seventeenth and eighteenth centuries for physics, so it has also been in the twentieth and twenty-first for the psychosocial sciences. The creation of exact, reproducible and well maintained international standards is a matter of increasing concern today for the roles they will play in education, health care, the work place, business intelligence, and the economy at large.

As the economic crises persist and perhaps worsen, demand for common product definitions and for interpretable, meaningful measures of impacts and outcomes in education, health care, social services, environmental management, etc. will reach a crescendo. We need an exact, rational and international system of measuring literacy, numeracy, health, motivations, quality of life, community cohesion, and environmental quality, and we needed it fifty years ago. We need to reinvigorate and revive a wider concern across the sciences to establish all scientific units with equal rigor, and to have all measures used in research and practice based wherever possible on consensus standard metrics valued for their accuracy, stability and availability. We need to replicate in the psychosocial sciences the profound change in the notation and interpretation of the mathematical formalism of physics that occurred in the eighteenth and nineteenth centuries. We need to extend the true union of mathematics and measurement from physics to the psychosocial sciences.

Previous posts in this blog speak to the persistent invariance and objectivity exhibited by many of the constructs measured using ability tests, attitude surveys, performance assessments, etc. A question previously raised in this blog concerning the reproductive logic of living meaning deserves more attention, and can be productively explored in terms of complex adaptive functionality.

In a hierarchy of reasons why mathematically rigorous measurement is valuable, few are closer to the top of the list than facilitating the spontaneous self-organization of networks of agents and actors (Latour, 1987). The conception, gestation, birthing, and nurturing of complex adaptive systems constitute a reproductive logic for sociocultural traditions. Scientific traditions, in particular, form mature self-identities via a mutually implied subject-object relation absorbed into the flow of a dialectical give and take, just as economic systems do.

Complex adaptive systems establish the reproductive viability of their offspring and the coherence of an ecological web of meaningful relationships by means of this dialectic. Taylor (2003, pp. 166-8) describes the five moments in the formation and operation of complex adaptive systems, which must be able

  • to identify regularities and patterns in the flow of matter, energy, and information (MEI) in the environment (business, social, economic, natural, etc.);
  • to produce condensed schematic representations of these regularities so they can be identified as the same if they are repeated;
  • to form reproductively interchangeable variants of these representations;
  • to succeed reproductively by means of the accuracy and reliability of the representations’ predictions of regularities in the MEI data flow; and
  • adaptively modify and reorganize representations by means of informational feedback from the environment.

All living systems, from bacteria and viruses to plants and animals to languages and cultures, are complex adaptive systems characterized by these five features.

In the history of science, technologically-embodied measurement facilitates complex adaptive systems of various kinds. That history can be used as a basis for a meta-theoretical perspective on what measurement must look like in the social and human sciences. Each of Taylor’s five moments in the formation and operation of complex adaptive systems describes a capacity of measurement systems, in that:

  • data flow regularities are captured in initial, provisional instrument calibrations;
  • condensed local schematic representations are formed when an instrument’s calibrations are anchored at repeatedly observed, invariant values;
  • interchangeable nonlocal versions of these invariances are created by means of instrument equating, item banking, metrological networks, and selective, tailored, adaptive instrument administration;
  • measures read off inaccurate and unreliable instruments will not support successful reproduction of the data flow regularity, but accurate and reliable instruments calibrated in a shared common unit provide a reference standard metric that enhances communication and reproduces the common voice and shared identity of the research community; and
  • consistently inconsistent anomalous observations provide feedback suggesting new possibilities for as yet unrecognized data flow regularities that might be captured in new calibrations.

Measurement in the social sciences is in the process of extending this functionality into practical applications in business, education, health care, government, and elsewhere. Over the course of the last 50 years, measurement research and practice has already iterated many times through these five moments. In the coming years, a new critical mass will be reached in this process, systematically bringing about scale-of-magnitude improvements in the efficiency of intangible assets markets.

How? What does a “data flow regularity” look like? How is it condensed into a a schematic and used to calibrate an instrument? How are local schematics combined together in a pattern used to recognize new instances of themselves? More specifically, how might enterprise resource planning (ERP) software (such as SAP, Oracle, or PeopleSoft) simultaneously provide both the structure needed to support meaningful comparisons and the flexibility needed for good fit with the dynamic complexity of adaptive and generative self-organizing systems?

Prior work in this area proposes a dual-core, loosely coupled organization using ERP software to build social and intellectual capital, instead of using it as an IT solution addressing organizational inefficiencies (Lengnick-Hall, Lengnick-Hall, & Abdinnour-Helm, 2004). The adaptive and generative functionality (Stenner & Stone, 2003) provided by probabilistic measurement models (Rasch, 1960; Andrich, 2002, 2004; Bond & Fox, 2007; Wilson, 2005; Wright, 1977, 1999) makes it possible to model intra- and inter-organizational interoperability (Weichhart, Feiner, & Stary, 2010) at the same time that social and intellectual capital resources are augmented.

Actor/agent network theory has emerged from social and historical studies of the shared and competing moral, economic, political, and mathematical values disseminated by scientists and technicians in a variety of different successful and failed areas of research (Latour, 2005). The resulting sociohistorical descriptions ought be translated into a practical program for reproducing successful research programs. A metasystem for complex adaptive systems of research is implied in what Roche (1998) calls a “true union of mathematics and measurement.”

Complex adaptive systems are effectively constituted of such a union, even if, in nature, the mathematical character of the data flows and calibrations remains virtual. Probabilistic conjoint models for fundamental measurement are poised to extend this functionality into the human sciences. Though few, if any, have framed the situation in these terms, these and other questions are being explored, explicitly and implicitly, by hundreds of researchers in dozens of fields as they employ unidimensional models for measurement in their investigations.

If so, might then we be on the verge of a yet another new reading and writing of Galileo’s “book of nature,” this time restoring the “loss of meaning for life” suffered in Galileo’s “fateful omission” of the means by which nature came to be understood mathematically (Husserl, 1970)? The elements of a comprehensive, mathematical, and experimental design science of living systems appear on the verge of providing a saturated solution—or better, a nonequilbrium thermodynamic solution—to some of the infamous shortcomings of modern, Enlightenment science. The unity of science may yet be a reality, though not via the reductionist program envisioned by the positivists.

Some 50 years ago, Marshall McLuhan popularized the expression, “The medium is the message.” The special value quantitative measurement in the history of science does not stem from the mere use of number. Instruments are media on which nature, human or other, inscribes legible messages. A renewal of the true union of mathematics and measurement in the context of intangible assets will lead to a new cultural, scientific, and economic renaissance. As Thomas Kuhn (1977, p. 221) wrote,

“The full and intimate quantification of any science is a consummation devoutly to be wished. Nevertheless, it is not a consummation that can effectively be sought by measuring. As in individual development, so in the scientific group, maturity comes most surely to those who know how to wait.”

Given that we have strong indications of how full and intimate quantification consummates a true union of mathematics and measurement, the time for waiting is now past, and the time to act has come. See prior blog posts here for suggestions on an Intangible Assets Metric System, for resources on methods and research, for other philosophical ruminations, and more. This post is based on work presented at Rasch meetings several years ago (Fisher, 2006a, 2006b).

References

Andrich, D. (2002). Understanding resistance to the data-model relationship in Rasch’s paradigm: A reflection for the next generation. Journal of Applied Measurement, 3(3), 325-59.

Andrich, D. (2004, January). Controversy and the Rasch model: A characteristic of incompatible paradigms? Medical Care, 42(1), I-7–I-16.

Bond, T., & Fox, C. (2007). Applying the Rasch model: Fundamental measurement in the human sciences, 2d edition. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Fisher, W. P., Jr. (2006a, Friday, April 28). Complex adaptive functionality via measurement. Presented at the Midwest Objective Measurement Seminar, M. Lunz (Organizer), University of Illinois at Chicago.

Fisher, W. P., Jr. (2006b, June 27-9). Measurement and complex adaptive functionality. Presented at the Pacific Rim Objective Measurement Symposium, T. Bond & M. Wu (Organizers), The Hong Kong Institute of Education, Hong Kong.

Husserl, E. (1970). The crisis of European sciences and transcendental phenomenology: An introduction to phenomenological philosophy (D. Carr, Trans.). Evanston, Illinois: Northwestern University Press (Original work published 1954).

Kuhn, T. S. (1977). The function of measurement in modern physical science. In T. S. Kuhn, The essential tension: Selected studies in scientific tradition and change (pp. 178-224). Chicago: University of Chicago Press. [(Reprinted from Kuhn, T. S. (1961). Isis, 52(168), 161-193.]

Latour, B. (1987). Science in action: How to follow scientists and engineers through society. New York: Cambridge University Press.

Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory. (Clarendon Lectures in Management Studies). Oxford, England: Oxford University Press.

Lengnick-Hall, C. A., Lengnick-Hall, M. L., & Abdinnour-Helm, S. (2004). The role of social and intellectual capital in achieving competitive advantage through enterprise resource planning (ERP) systems. Journal of Engineering Technology Management, 21, 307-330.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Roche, J. (1998). The mathematics of measurement: A critical history. London: The Athlone Press.

Stenner, A. J., & Stone, M. (2003). Item specification vs. item banking. Rasch Measurement Transactions, 17(3), 929-30 [http://www.rasch.org/rmt/rmt173a.htm].

Taylor, M. C. (2003). The moment of complexity: Emerging network culture. Chicago: University of Chicago Press.

Weichhart, G., Feiner, T., & Stary, C. (2010). Implementing organisational interoperability–The SUddEN approach. Computers in Industry, 61, 152-160.

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Wright, B. D. (1977). Solving measurement problems with the Rasch model. Journal of Educational Measurement, 14(2), 97-116 [http://www.rasch.org/memo42.htm].

Wright, B. D. (1997, Winter). A history of social science measurement. Educational Measurement: Issues and Practice, 16(4), 33-45, 52 [http://www.rasch.org/memo62.htm].

Wright, B. D. (1999). Fundamental measurement for psychology. In S. E. Embretson & S. L. Hershberger (Eds.), The new rules of measurement: What every educator and psychologist should know (pp. 65-104 [http://www.rasch.org/memo64.htm]). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.