Archive for the ‘Metaphysics’ Category

Enchantment, Organizations, and Mediating Instruments: Potential for a New Consensus?

August 3, 2011

I just came across something that could be helpful in regaining some forward momentum and expanding the frame of reference for the research on caring in nursing with Jane Sumner (Sumner & Fisher, 2008). We have yet to really work in the failure of Habermas’ hermeneutic objectivism (Kim, 2002; Thompson, 1984) and we haven’t connected what we’ve done with (a) Ricoeur’s (1984, 1985, 1990, 1995) sense of narrative as describing the past en route to prescribing the future (prefiguring, configuring, and refiguring the creation of meaning in discourse) and with (b) Wright’s (1999) sense of learning from past data to efficiently and effectively anticipate new data within a stable inferential frame of reference.

Now I’ve found a recent publication that resonates well with this goal, and includes examples from nursing to boot. Boje and Baskin (2010; see especially pp. 12-17 in the manuscript available at cite only secondary literature but do a good job of articulating where the field is at conceptually and in tracing the sources of that articulation.  So they make no mention of Ricoeur on narrative (1984, 1985, 1990) and on play and the heuristic fiction (1981, pp. 185-187), and they make no mention of Gadamer on play as the most important clue to methodological authenticity (1989, pp. 101-134). It follows that they then also do not make any use of the considerable volume of other available and relevant work on the metaphysics of allure, captivation, enthrallment, rapture, beauty, or eros.

This is all very important because these issues are highly salient markers of the distinction between a modern, Cartesian, and mechanical worldview destructive of enchantment and play, and the amodern, nonCartesian, and organic worldview in tune with enchantment and play. As I have stressed repeatedly in these posts, the way we frame problems is now the primary problem, in opposition to those who think identifying and applying resources, techniques, or will power is the problem. It is essential that we learn to frame problems in a way that begins from requirements of subject-object interdependence instead of from assumptions of subject-object independence. Previous posts here explore in greater detail how we are all captivated by the desire for meaning. Any time we choose negotiation or patient waiting over violence, we express faith in the ultimate value of trusting our words. So though Boje and Baskin do not document this larger context, they still effectively show exactly where and how work in the nonCartesian paradigm of enchantment connects up with what’s going on in organizational change management theory.

The paper’s focus on narrative as facilitating enchantment and disenchantment speaks to our fundamental absorption into the play of language. Enchantment is described on page 2 as involving positive connection with existence, of being enthralled with the wonder of being endowed with natural and cultural gifts.  Though not described as such, this hermeneutics of restoration, as Ricoeur (1967) calls it, focuses on the way symbols give rise to thought in an unasked-for assertion of meaningfulness. The structure we see emerge of its own accord across multiple different data sets from tests, surveys, and assessments is an important example of this gift through which previously identified meanings re-assert themselves anew (see my published philosophical work, such as Fisher, 2004). The contrast with disenchantment of course arises as a function of the dead and one-sided modern Cartesian effort aimed at controlling the environment, which effectively eliminates wonder and meaning via a hermeneutics of suspicion.

In accord with the work done to date with Sumner on caring in nursing, the Boje and Baskin paper describes people’s variable willingness to accept disenchantment or demand enchantment (p. 13) in terms that look quite like preconventional and postconventional Kohlbergian stages. A nurse’s need to shift from one dominant narrative form to another is described as very difficult because of the way she had used the one to which she was accustomed to construct her identity as a nurse (p. 15). Bi-directionality between nurses and patients is implied in another example of a narrative shift in a hospital (p. 16). Both identity and bi-directionality are central issues in the research with Sumner.

The paper also touches on the conceptual domain of instrumental realism, as this is developed in the works of Ihde, Latour, Heelan and others (on p. 6; again, without citing them), and emphasizes a nonCartesian subject-object unity and belongingness, which is described at length in Ricoeur’s work. At the bottom of page 7 and top of 8, storytelling is theorized in terms of retrospection, presentness, and a bet on future meaning, which precisely echoes Ricoeur’s (1984, 1985, 1990) sense of narrative refiguration, configuration, and prefiguration. A connection with measurement comes here, in that what we want is to:

“reach beyond the data in hand to what these data might imply about future data, still unmet, but urgent to foresee. The first problem is how to predict values for these future data, which, by the meaning of inference, are necessarily missing. This meaning of missing must include not only the future data to be inferred but also all possible past data that were lost or never collected” (Wright, 1999, p. 76).

Properly understood and implemented (see previous posts in this blog), measurement based in models of individual behavior provides a way to systematically create an atmosphere of emergent enchantment. Having developmentally sound narratives rooted in individual measures on multiple dimensions over time gives us a shared written history that we can all find ourselves in, and that we can then use to project a vision of a shared future that has reasonable expectations for what’s possible.

This mediation of past and future by means of technical instruments is being described in a way (Miller & O’Leary, 2007) that to me (Fisher & Stenner, 2011) denotes a vital distinction not just between the social and natural sciences, but between economically moribund and inflationary industries such as education, health care, and social services, on the one hand, and economically vibrant and deflationary industries such as microprocessors, on the other.

It is here, and I say this out loud for the first time here, even to myself, that I begin to see the light at the end of the tunnel, to see a way that I might find a sense of closure and resolution in the project I took up over 30 years ago. My puzzle has been one of understanding in theory and practice how it is that measurement and mathematical thinking are nothing but refinements of the logic used in everyday conversation. It only occurs to me now that, if we can focus the conversations that we are in ways that balance meaningfulness and precision, that situate each of us as individuals relative to the larger wholes of who we have been and who we might be, that encompasses both the welcoming Socratic midwife and the annoying Socratic gadfly as different facets of the same framework, and that enable us to properly coordinate and align technical projects involving investments in intangible capital, well, then, we’ll be in a position to more productively engage with the challenges of the day.

There won’t be any panacea but there will be a new consensus and a new infrastructure that, however new they may seem, will enact yet again, in a positive way, the truth of the saying, “the more things change, the more they stay the same.” As I’ve repeatedly argued, the changes we need to implement are nothing but extensions of age-old principles into areas in which they have not yet been applied. We should take some satisfaction from this, as what else could possibly work? The originality of the application does not change the fact that it is rooted in appropriating, via a refiguration, to be sure, a model created for other purposes that works in relation to new purposes.

Another way of putting the question is in terms of that “permanent arbitration between technical universalism and the personality constituted on the ethico-political plane” characteristic of the need to enter into the global technical society while still retaining our roots in our cultural past (Ricoeur, 1974, p. 291). What is needed is the capacity to mediate each individual’s retelling of the grand narrative so that each of us sees ourselves in everyone else, and everyone else in ourselves. Though I am sure the meaning of this is less than completely transparent right now, putting it in writing is enormously satisfying, and I will continue to work on telling the tale as it needs to be told.


Boje, D., & Baskin, K. (2010). Our organizations were never disenchanted: Enchantment by design narratives vs. enchantment by emergence. Journal of Organizational Change Management, 24(4), 411-426.

Fisher, W. P., Jr. (2004, October). Meaning and method in the social sciences. Human Studies: A Journal for Philosophy and the Social Sciences, 27(4), 429-54.

Fisher, W. P., Jr., & Stenner, A. J. (2011, August 31 to September 2). A technology roadmap for intangible assets metrology. International Measurement Confederation (IMEKO). Jena, Germany.

Gadamer, H.-G. (1989). Truth and method (J. Weinsheimer & D. G. Marshall, Trans.) (Second revised edition). New York: Crossroad.

Kim, K.-M. (2002, May). On the failure of Habermas’s hermeneutic objectivism. Cultural Studies <–> Critical Methodologies, 2(2), 270-98.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-34.

Ricoeur, P. (1967). Conclusion: The symbol gives rise to thought. In R. N. Anshen (Ed.), The symbolism of evil (pp. 347-57). Boston, Massachusetts: Beacon Press.

Ricoeur, P. (1974). Political and social essays (D. Stewart & J. Bien, Eds.). Athens, Ohio: Ohio University Press.

Ricoeur, P. (1981). Hermeneutics and the human sciences: Essays on language, action and interpretation (J. B. Thompson, Ed.) (J. B. Thompson, Trans.). Cambridge, England: Cambridge University Press.

Ricoeur, P. (1984, 1985, 1990). Time and Narrative, Vols. 1-3 (K. McLaughlin (Blamey) & D. Pellauer, Trans.). Chicago, Illinois: University of Chicago Press.

Ricoeur, P. (1995). Reply to Peter Kemp. In L. E. Hahn (Ed.), The philosophy of Paul Ricoeur (pp. 395-398). Chicago, Illinois: Open Court.

Sumner, J., & Fisher, W. P., Jr. (2008). The moral construct of caring in nursing as communicative action: The theory and practice of a caring science. Advances in Nursing Science, 31(4), E19-E36.

Thompson, J. B. (1981). Critical hermeneutics: A study in the thought of Paul Ricoeur and Jurgen Habermas. New York: Cambridge University Press.

Wright, B. D. (1999). Fundamental measurement for psychology. In S. E. Embretson & S. L. Hershberger (Eds.), The new rules of measurement: What every educator and psychologist should know (pp. 65-104 []). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at
Permissions beyond the scope of this license may be available at

Twelve principles I’m taking away from recent discussions

January 27, 2011
  1. Hypotheses non fingo A: Ideas about things are not hypothesized and tested against those things so much as things are determined to be what they are by testing them against ideas. Facts are recognizable as such only because they relate with a prior idea.
  2. Hypotheses non fingo B: Cohen’s introduction to Newton’s Opticks makes it plain that Newton is not offering a general methodological pointer in this phrase. Rather, he is answering critics who wanted him to explain what gravity is, and what it’s causes are. In saying, I feign no hypotheses, Newton is merely indicating that he’s not going to make up stories about something he knows nothing about. And in contrast with the Principia, the Opticks provides a much more accessible overview of the investigative process, from the initial engagement with light, where indeed no hypotheses as to its causes are offered, and onto more specific inquiries into its properties, where hypotheses necessarily inform experimental contrasts.
  3. Ideas, such as mathematical/geometrical theorems, natural laws, or the structure of Rasch models, do not exist and are unobservable. No triangle ever fits the Pythagorean theorem, there are no bodies left to themselves or balls rolling on frictionless planes, and there are no test, survey, or assessment results completely unaffected by the particular questions asked and persons answering.
  4. The clarity and transparency of an idea requires careful attention to the unity and sameness of the relevant class of things observed. So far as possible, the observational framework must be constrained by theory to produce observations likely to conform reasonably with the idea.
  5. New ideas come into language when a phenomenon or effect, often technically produced, exhibits persistent and stable properties across samples, observers, instruments, etc.
  6. New word-things that come into language, whether a galaxy, an element in the periodic table, a germ, or a psychosocial construct, may well have existed since the dawn of time and may well have exerted tangible effects on humans for millennia. They did not, however, do so for anyone in terms of the newly-available theory and understanding, which takes a place in a previously unoccupied position within the matrix of interrelated ideas, facts, and social networks.
  7. Number does not delimit the pure ideal concept of amount, but vice versa.
  8. Rasch models are one way of specifying the ideal form observations must approximate if they are to exhibit magnitude amounts divisible into ratios. Fitting data to such a model in the absence of a theory of the construct is only a very early step in the process of devising a measurement system.
  9. The invariant representation of a construct across samples, instruments, observers, etc. exhibiting magnitude amounts divisible into ratios provides the opportunity for allowing a pure ideal concept of amount to delimit number.
  10. Being suspended in language does not imply a denial of concrete reality and the separate independent existence of things. Rather, if those things did not exist, there would be no impetus for anything to come into words, and no criteria for meaningfulness.
  11. Situating objectivity in a sphere of signs removes the need for a separate sphere of facts constituted outside of language. Insofar as an ideal abstraction approximates convergence with and separation from different ways of expressing its meaning, an objective status owing nothing to a sphere of facts existing outside of language is obtained.
  12. The technology of a signifying medium (involving an alphabet, words as names for features of the environment, other symbols, syntactical and semantic rules, tools and instruments, etc.) gives rise to observations (data) that may exhibit regular patterns and that may come to be understood well enough to be reproduced at will via theory. Each facet (instrument, data, theory) mediates the relation of the other two.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at
Permissions beyond the scope of this license may be available at

Newton, Metaphysics, and Measurement

January 20, 2011

Though Newton claimed to deduce quantitative propositions from phenomena, the record shows that he brought a whole cartload of presuppositions to bear on his observations (White, 1997), such as his belief that Pythagoras was the discoverer of the inverse square law, his knowledge of Galileo’s freefall experiments, and his theological and astrological beliefs in occult actions at a distance. Without his immersion in this intellectual environment, he likely would not have been able to then contrive the appearance of deducing quantity from phenomena.

The second edition of the Principia, in which appears the phrase “hypotheses non fingo,” was brought out in part to respond to the charge that Newton had not offered any explanation of what gravity is. De Morgan, in particular, felt that Newton seemed to know more than he could prove (Keynes, 1946). But in his response to the critics, and in asserting that he feigns no hypotheses, Newton was making an important distinction between explaining the causes or composition of gravity and describing how it works. Newton was saying he did not rely on or make or test any hypotheses as to what gravity is; his only concern was with how it behaves. In due course, gravity came to be accepted as a fundamental feature of the universe in no need of explanation.

Heidegger (1977, p. 121) contends that Newton was, as is implied in the translation “I do not feign hypotheses,” saying in effect that the ground plan he was offering as a basis for experiment and practical application was not something he just made up. Despite Newton’s rejection of metaphysical explanations, the charge of not explaining gravity for what it is was being answered with a metaphysics of how, first, to derive the foundation for a science of precise predictive control from nature, and then resituate that foundation back within nature as an experimental method incorporating a mathematical plan or model. This was, of course, quite astute of Newton, as far as he went, but he stopped far short of articulating the background assumptions informing his methods.

Newton’s desire for a logic of experimental science led him to reject anything “metaphysical or physical, or based on occult qualities, or mechanical” as a foundation for proceeding. Following in Descartes’ wake, Newton then was satisfied to solidify the subject-object duality and to move forward on the basis of objective results that seemed to make metaphysics a thing of the past. Unfortunately, as Burtt (1954/1932, pp. 225-230) observes in this context, the only thing that can possibly happen when you presume discourse to be devoid of metaphysical assumptions is that your metaphysics is more subtly insinuated and communicated to others because it is not overtly presented and defended. Thus we have the history of logical positivism as the dominant philosophy of science.

It is relevant to recall here that Newton was known for strong and accurate intuitions, and strong and unorthodox religious views (he held the Lucasian Chair at Cambridge only by royal dispensation, as he was not Anglican). It must be kept in mind that Newton’s combination of personal characteristics was situated in the social context of the emerging scientific culture’s increasing tendency to prioritize results that could be objectively detached from the particular people, equipment, samples, etc. involved in their production (Shapin, 1989). Newton then had insights that, while remarkably accurate, could not be entirely derived from the evidence he offered and that, moreover, could not acceptably be explained informally, psychologically, or theologically.

What is absolutely fascinating about this constellation of factors is that it became a model for the conduct of science. Of course, Newton’s laws of motion were adopted as the hallmark of successful scientific modeling in the form of the Standard Model applied throughout physics in the nineteenth century (Heilbron, 1993). But so was the metaphysical positivist logic of a pure objectivism detached from everything personal, intuitive, metaphorical, social, economic, or religious (Burtt, 1954/1932).

Kuhn (1970) made a major contribution to dismantling this logic when he contrasted textbook presentations of the methodical production of scientific effects with the actual processes of cobbled-together fits and starts that are lived out in the work of practicing scientists. But much earlier, James Clerk Maxwell (1879, pp. 162-163) had made exactly the same observation in a contrast of the work of Ampere with that of Faraday:

“The experimental investigation by which Ampere established the laws of the mechanical action between electric currents is one of the most brilliant achievements in science. The whole, theory and experiment, seems as if it had leaped, full grown and full armed, from the brain of the ‘Newton of electricity.’ It is perfect in form, and unassailable in accuracy, and it is summed up in a formula from which all the phenomena may be deduced, and which must always remain the cardinal formula of electro-dynamics.

“The method of Ampere, however, though cast into an inductive form, does not allow us to trace the formation of the ideas which guided it. We can scarcely believe that Ampere really discovered the law of action by means of the experiments which he describes. We are led to suspect, what, indeed, he tells us himself* [Ampere’s Theorie…, p. 9], that he discovered the law by some process which he has not shewn us, and that when he had afterwards built up a perfect demonstration he removed all traces of the scaffolding by which he had raised it.

“Faraday, on the other hand, shews us his unsuccessful as well as his successful experiments, and his crude ideas as well as his developed ones, and the reader, however inferior to him in inductive power, feels sympathy even more than admiration, and is tempted to believe that, if he had the opportunity, he too would be a discoverer. Every student therefore should read Ampere’s research as a splendid example of scientific style in the statement of a discovery, but he should also study Faraday for the cultivation of a scientific spirit, by means of the action and reaction which will take place between newly discovered facts and nascent ideas in his own mind.”

Where does this leave us? In sum, Rasch emulated Ampere in two ways. He did so first in wanting to become the “Newton of reading,” or even the “Newton of psychosocial constructs,” when he sought to show that data from reading test items and readers are structured with an invariance analogous to that of data from instruments applying a force to an object with mass (Rasch, 1960, pp. 110-115). Rasch emulated Ampere again when, like Ampere, after building up a perfect demonstration of a reading law structured in the form of Newton’s second law, he did not report the means by which he had constructed test items capable of producing the data fitting the model, effectively removing all traces of the scaffolding.

The scaffolding has been reconstructed for reading (Stenner, et al., 2006) and has also been left in plain view by others doing analogous work involving other constructs (cognitive and moral development, mathematics ability, short-term memory, etc.). Dawson (2002), for instance, compares developmental scoring systems of varying sophistication and predictive control. And it may turn out that the plethora of uncritically applied Rasch analyses may turn out to be a capital resource for researchers interested in focusing on possible universal laws, predictive theories, and uniform metrics.

That is, published reports of calibration, error, and fit estimates open up opportunities for “pseudo-equating” (Beltyukova, Stone, & Fox, 2004; Fisher 1997, 1999) in their documentation of the invariance, or lack thereof, of constructs over samples and instruments. The evidence will point to a need for theoretical and metric unification directly analogous to what happened in the study and use of electricity in the nineteenth century:

“…’the existence of quantitative correlations between the various forms of energy, imposes upon men of science the duty of bringing all kinds of physical quantity to one common scale of comparison.’” [Schaffer, 1992, p. 26; quoting Everett 1881; see Smith & Wise 1989, pp. 684-4]

Qualitative and quantitative correlations in scaling results converged on a common construct in the domain of reading measurement through the 1960s and 1970s, culminating in the Anchor Test Study and the calibration of the National Reference Scale for Reading (Jaeger, 1973; Rentz & Bashaw, 1977). The lack of a predictive theory and the entirely empirical nature of the scale estimates prevented the scale from wide application, as the items in the tests that were equated were soon replaced with new items.

But the broad scale of the invariance observed across tests and readers suggests that some mechanism must be at work (Stenner, Stone, & Burdick, 2009), or that some form of life must be at play (Fisher, 2003a, 2003b, 2004, 2010a), structuring the data. Eventually, some explanation accounting for the structure ought to become apparent, as it did for reading (Stenner, Smith, & Burdick, 1983; Stenner, et al., 2006). This emergence of self-organizing structures repeatedly asserting themselves as independently existing real things is the medium of the message we need to hear. That message is that instruments play a very large and widely unrecognized role in science. By facilitating the routine production of mutually consistent, regularly observable, and comparable results they set the stage for theorizing, the emergence of consensus on what’s what, and uniform metrics (Daston & Galison, 2007; Hankins & Silverman, 1999; Latour, 1987, 2005; Wise, 1988, 1995). The form of Rasch’s models as extensions of Maxwell’s method of analogy (Fisher, 2010b) makes them particularly productive as a means of providing self-organizing invariances with a medium for their self-inscription. But that’s a story for another day.


Beltyukova, S. A., Stone, G. E., & Fox, C. M. (2004). Equating student satisfaction measures. Journal of Applied Measurement, 5(1), 62-9.

Burtt, E. A. (1954/1932). The metaphysical foundations of modern physical science (Rev. ed.) [First edition published in 1924]. Garden City, New York: Doubleday Anchor.

Daston, L., & Galison, P. (2007). Objectivity. Cambridge, MA: MIT Press.

Dawson, T. L. (2002, Summer). A comparison of three developmental stage scoring systems. Journal of Applied Measurement, 3(2), 146-89.

Fisher, W. P., Jr. (1997). Physical disability construct convergence across instruments: Towards a universal metric. Journal of Outcome Measurement, 1(2), 87-113.

Fisher, W. P., Jr. (1999). Foundations for health status metrology: The stability of MOS SF-36 PF-10 calibrations across samples. Journal of the Louisiana State Medical Society, 151(11), 566-578.

Fisher, W. P., Jr. (2003a, December). Mathematics, measurement, metaphor, metaphysics: Part I. Implications for method in postmodern science. Theory & Psychology, 13(6), 753-90.

Fisher, W. P., Jr. (2003b, December). Mathematics, measurement, metaphor, metaphysics: Part II. Accounting for Galileo’s “fateful omission.” Theory & Psychology, 13(6), 791-828.

Fisher, W. P., Jr. (2004, October). Meaning and method in the social sciences. Human Studies: A Journal for Philosophy and the Social Sciences, 27(4), 429-54.

Fisher, W. P., Jr. (2010a). Reducible or irreducible? Mathematical reasoning and the ontological method. Journal of Applied Measurement, 11(1), 38-59.

Fisher, W. P., Jr. (2010b). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics: Conference Series, 238(1),

Hankins, T. L., & Silverman, R. J. (1999). Instruments and the imagination. Princeton, New Jersey: Princeton University Press.

Jaeger, R. M. (1973). The national test equating study in reading (The Anchor Test Study). Measurement in Education, 4, 1-8.

Keynes, J. M. (1946, July). Newton, the man. (Speech given at the Celebration of the Tercentenary of Newton’s birth in 1642.) MacMillan St. Martin’s Press (London, England), The Collected Writings of John Maynard Keynes Volume X, 363-364.

Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago, Illinois: University of Chicago Press.

Latour, B. (1987). Science in action: How to follow scientists and engineers through society. New York: Cambridge University Press.

Latour, B. (2005). Reassembling the social: An introduction to Actor-Network-Theory. (Clarendon Lectures in Management Studies). Oxford, England: Oxford University Press.

Maxwell, J. C. (1879). Treatise on electricity and magnetism, Volumes I and II. London, England: Macmillan.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Rentz, R. R., & Bashaw, W. L. (1977, Summer). The National Reference Scale for Reading: An application of the Rasch model. Journal of Educational Measurement, 14(2), 161-179.

Schaffer, S. (1992). Late Victorian metrology and its instrumentation: A manufactory of Ohms. In R. Bud & S. E. Cozzens (Eds.), Invisible connections: Instruments, institutions, and science (pp. 23-56). Bellingham, WA: SPIE Optical Engineering Press.

Shapin, S. (1989, November-December). The invisible technician. American Scientist, 77, 554-563.

Stenner, A. J., Burdick, H., Sanford, E. E., & Burdick, D. S. (2006). How accurate are Lexile text measures? Journal of Applied Measurement, 7(3), 307-22.

Stenner, A. J., Smith, M., III, & Burdick, D. S. (1983, Winter). Toward a theory of construct definition. Journal of Educational Measurement, 20(4), 305-316.

Stenner, A. J., Stone, M., & Burdick, D. (2009, Autumn). The concept of a measurement mechanism. Rasch Measurement Transactions, 23(2), 1204-1206.

White, M. (1997). Isaac Newton: The last sorcerer. New York: Basic Books.

Wise, M. N. (1988). Mediating machines. Science in Context, 2(1), 77-113.

Wise, M. N. (Ed.). (1995). The values of precision. Princeton, New Jersey: Princeton University Press.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at
Permissions beyond the scope of this license may be available at