Archive for the ‘Innovation’ Category

The New Information Platform No One Sees Coming

December 6, 2012

I’d like to draw your attention to a fundamentally important area of disruptive innovations no one seems to see coming. The biggest thing rising in the world of science today that does not appear to be on anyone’s radar is measurement. Transformative potential beyond that of the Internet itself is available.

Realizing that potential will require an Intangible Assets Metric System. This system will connect together all the different ways any one thing is measured, bringing common languages for representing human, social, and economic value into play everywhere. We need these metrics on the front lines of education, health care, social services, and in human, reputation, and natural resource management, as well as in the economic models and financial spreadsheets informing policy, and in the scientific research conducted in dozens of fields.

All reading ability measures, for instance, should be transparently, inexpensively, and effortlessly expressed in a universally uniform metric, in the same way that standardized measures of weight and volume inform grocery store purchasing decisions. We have made starts at such systems for reading, writing, and math ability measures, and for health status, functionality, and chronic disease management measures. There oddly seems to be, however, little awareness of the full value that stands to be gained from uniform metrics in these areas, despite the overwhelming human, economic, and scientific value derived from standardized units in the existing economy. There has accordingly been virtually no leadership or investment in this area.

Measurement practice in business is woefully out of touch with the true paradigm shift that has been underway in psychometrics for years, even though the mantra “you manage what you measure” is repeated far and wide. In a fascinating twist, practically the only ones who notice the business world’s conceptual shortfall in measurement practice are the contrarians who observe that quantification can often be more of a distraction from management than the medium of its execution—but this is true only when measures are poorly conceived, designed, and implemented.

Demand for better measurement—measurement that reduces data volume not only with no loss of information but with the addition of otherwise unavailable interstitial information; that supports mass customized comparability for informed purchasing and quality improvement decisions; and that enables common product definitions for outcomes-based budgeting—is growing hand in hand with the spread of resilient, nimble, lean, and adaptive business models, and with the ongoing geometrical growth in data volume.

An even bigger source of demand for the features of advanced measurement is the increasing dependence of the economy on intangible assets, those forms of human, social, and natural capital that comprise 90% or more of the total capital under management. We will bring these now economically dead forms of capital to life by systematically standardizing representations of their quality and quantity. The Internet is the planetary nervous system through which basic information travels, and the Intangible Assets Metric System will be the global cerebrum, where higher order thinking takes place.

It will not be possible to realize the full potential of lean thinking in the information- and service-based economy without an Intangible Assets Metric System. Given the long-proven business value of standards and the role of measurement in management, it seems self-evident that our ongoing economic difficulties stem largely from our failure to develop and deploy an Intangible Assets Metric System providing common currencies for the exchange of authentic wealth. The future of sustainable and socially responsible business practices must surely depend extensively on universal access to flexible and practical uniform metrics for intangible assets.

Of course, for global intangible assets standards to be viable, they must be adaptable to local business demands and conditions without compromising their comparability. And that is just what is most powerfully disruptive about contemporary measurement methods: they make mass customization a reality. They’ve been doing so in computerized testing since the 1970s. Isn’t it time we started putting this technology to systematic use in a wide range of applications, from human and environmental resource management to education, health care, and social services?

Question Authority: Queries In the Back of the Wall Street Demonstrators’ Minds

October 2, 2011

I think the Wall Street demonstrators’ lack of goals and the admission of not having a solution is very important. All solutions offered so far are band-aids at best, and most are likely to do more harm than good.

I think I have an innovative way of articulating the questions people have on their minds. I thought of scattering small pieces of paper anywhere there are these demonstrations going on, with questions like these on them:

Feeling robbed of the trust, loyalty, and commitment you invested?

Unable to get a good return on your investment in your education?

Feeling robbed of your share of the world’s natural resources?

How many shares of social capital do you own?

How many shares of literacy capital do you have on the market?

How many shares of health capital do you own?

How many shares of natural capital do you own?

Wishing there was an easy way to know what return rate you get on your health investments?

Wishing there was an easy way to know what return rate you get on your education investments?

Why don’t you have legal title to your literacy capital shares?

Why don’t you have legal title to your social capital shares?

Why don’t you have legal title to your health capital shares?

Why don’t you have legal title to your natural capital shares?

Why don’t you know how many literacy capital shares are rightfully yours?

Why don’t you know how many social capital shares are rightfully yours?

Why don’t you know how many health capital shares are rightfully yours?

Why don’t you know how many natural capital shares are rightfully yours?

Why is there no common currency for trading on your literacy capital?

Why is there no common currency for trading on your health capital?

Why is there no common currency for trading on your social capital?

Why is there no common currency for trading on your natural capital?

Why aren’t corporations accountable for their impacts on your literacy capital investments?

Why aren’t corporations accountable for their impacts on your natural capital investments?

Why aren’t corporations accountable for their impacts on your social capital investments?

Why aren’t corporations accountable for their impacts on your health capital investments?

Why aren’t governments accountable for their impacts on your literacy capital investments?

Why aren’t governments accountable for their impacts on your natural capital investments?

Why aren’t governments accountable for their impacts on your social capital investments?

Why aren’t governments accountable for their impacts on your health capital investments?

Why are educational outcomes not comparable in a common metric?

Why are health care outcomes not comparable in a common metric?

Why are social program outcomes not comparable in a common metric?

Why are natural resource management program outcomes not comparable in a common metric?

Why do accounting and economics focus on land, labor, and manufactured capital instead of putting the value of ecosystem services, and health, literacy, and social capital, on the books and in the models, along with property and manufactured capital?

If we truly do manage what we measure, why don’t we have a metric system for literacy capital?

Can we effectively manage literacy capital if we don’t have a universally recognized and accepted metric for it?

If we truly do manage what we measure, why don’t we have a metric system for health capital?

Can we effectively manage health capital if we don’t have a universally recognized and accepted metric for it?

If we truly do manage what we measure, why don’t we have a metric system for social capital?

Can we effectively manage social capital if we don’t have a universally recognized and accepted metric for it?

If we truly do manage what we measure, why don’t we have a metric system for natural capital?

Can we effectively manage natural capital if we don’t have a universally recognized and accepted metric for it?

How is our collective imagination being stifled by the lack of a common language for literacy capital?

How is our collective imagination being stifled by the lack of a common language for health capital?

How is our collective imagination being stifled by the lack of a common language for social capital?

How is our collective imagination being stifled by the lack of a common language for natural capital?

How can the voice of the people be heard without common languages for things that are important to us?

How do we know where we stand as individuals and as a society if we can’t track the value and volume of our literacy, health, social, and natural capital shares?

Why don’t NIST and NSF fund new research into literacy, health, social, and natural capital metrics?

Why aren’t banks required to offer literacy, health, social, and natural capital accounts?

If we want to harmonize relationships between people, within and between societies, and between culture and nature, why don’t we tune the instruments on which we play the music of our lives?

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Reimagining Capitalism Again, Part III: Reflections on Greider’s “Bold Ideas” in The Nation

September 10, 2011

And so, The Nation’s “Bold Ideas for a New Economy” is disappointing for not doing more to start from the beginning identified by its own writer, William Greider. The soul of capitalism needs to be celebrated and nourished, if we are to make our economy “less destructive and domineering,” and “more focused on what people really need for fulfilling lives.” The only real alternative to celebrating and nourishing the soul of capitalism is to kill it, in the manner of the Soviet Union’s failed experiments in socialism and communism.

The article speaks the truth, though, when it says there is no point in trying to persuade the powers that be to make the needed changes. Republicans see the market as it exists as a one-size-fits-all economic panacea, when all it can accomplish in its current incomplete state is the continuing externalization of anything and everything important about human, social, and environmental decency. For their part, Democrats do indeed “insist that regulation will somehow fix whatever is broken,” in an ever-expanding socialistic micromanagement of every possible exception to the rules that emerges.

To date, the president’s efforts at a nonpartisan third way amount only to vacillations between these opposing poles. The leadership that is needed, however, is something else altogether. Yes, as The Nation article says, capitalism needs to be made to serve the interests of society, and this will require deep structural change, not just new policies. But none of the contributors of the “bold ideas” presented propose deep structural changes of a kind that actually gets at the soul of capitalism. All of the suggestions are ultimately just new policies tweaking superficial aspects of the economy in mechanical, static, and very limited ways.

The article calls for “Democratizing reforms that will compel business and finance to share decision-making and distribute rewards more fairly.” It says the vision has different names but “the essence is a fundamental redistribution of power and money.” But corporate distortions of liability law, the introduction of boardroom watchdogs, and a tax on financial speculation do not by any stretch of the imagination address the root causes of social and environmental irresponsibility in business. They “sound like obscure technical fixes” because that’s what they are. The same thing goes for low-cost lending from public banks, the double or triple bottom lines of Benefit Corporations, new anti-trust laws, calls for “open information” policies, added personal stakes for big-time CEOs, employee ownership plans, the elimination of tax subsidies for, new standards for sound investing, new measures of GDP, and government guarantees of full employment.

All of these proposals sound like what ought to be the effects and outcomes of efforts addressing the root causes of capitalisms’ shortcomings. Instead, they are band aids applied to scratched fingers and arms when multiple by-pass surgery is called for. That is, what we need is to understand how to bring the spirit of capitalism to life in the new domains of human, social, and environmental interests, but what we’re getting are nothing but more of the same piecemeal ways of moving around the deck chairs on the Titanic.

There is some truth in the assertion that what really needs reinventing is our moral and spiritual imagination. As someone (Einstein or Edison?) is supposed to have put it, originality is simply a matter of having a source for an analogy no one else has considered. Ironically, the best model is often the one most taken for granted and nearest to hand. Such is the case with the two-sided scientific and economic effects of standardized units of measurement. The fundamental moral aspect here is nothing other than the Golden Rule, independently derived and offered in cultures throughout history, globally. Individualized social measurement is nothing if not a matter of determining whether others are being treated in the way you yourself would want to be treated.

And so, yes, to stress the major point of agreement with The Nation, “the new politics does not start in Washington.” Historically, at their best, governments work to keep pace with the social and technical innovations introduced by their peoples. Margaret Mead said it well a long time ago when she asserted that small groups of committed citizens are the only sources of real social change.

Not to be just one of many “advocates with bold imaginations” who wind up marginalized by the constraints of status quo politics, I claim my personal role in imagining a new economic future by tapping as deeply as I can into the positive, pre-existing structures needed for a transition into a new democratic capitalism. We learn through what we already know. Standards are well established as essential to commerce and innovation, but 90% of the capital under management in our economy—the human, social, and natural capital—lacks the standards needed for optimal market efficiency and effectiveness. An intangible assets metric system will be a vitally important way in which we extend what is right and good in the world today into new domains.

To conclude, what sets this proposal apart from those offered by The Nation and its readers hinges on our common agreement that “the most threatening challenge to capitalism is arguably the finite carrying capacity of the natural world.” The bold ideas proposed by The Nation’s readers respond to this challenge in ways that share an important feature in common: people have to understand the message and act on it. That fact dooms all of these ideas from the start. If we have to articulate and communicate a message that people then have to act on, we remain a part of the problem and not part of the solution.

As I argue in my “The Problem is the Problem” blog post of some months ago, this way of defining problems is itself the problem. That is, we can no longer think of ourselves as separate from the challenges we face. If we think we are not all implicated through and through as participants in the construction and maintenance of the problem, then we have not understood it. The bold ideas offered to date are all responses to the state of a broken system that seek to reform one or another element in the system when what we need is a whole new system.

What we need is a system that so fully embodies nature’s own ecological wisdom that the medium becomes the message. When the ground rules for economic success are put in place such that it is impossible to earn a profit without increasing stocks of human, social, and natural capital, there will be no need to spell out the details of a microregulatory structure of controlling new anti-trust laws, “open information” policies, personal stakes for big-time CEOs, employee ownership plans, the elimination of tax subsidies, etc. What we need is precisely what Greider reported from Innovest in his book: reliable, high quality information that makes human, social, and environmental issues matter financially. Situated in a context like that described by Bernstein in his 2004 The Birth of Plenty, with the relevant property rights, rule of law, scientific rationality, capital markets, and communications networks in place, it will be impossible to stop a new economic expansion of historic proportions.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Reimagining Capitalism Again, Part II: Scientific Credibility in Improving Information Quality

September 10, 2011

The previous posting here concluded with two questions provoked by a close consideration of a key passage in William Greider’s 2003 book, The Soul of Capitalism. First, how do we create the high quality, solid information markets need to punish and reward relative to ethical and sustainable human, social, and environmental values? Second, what can we learn from the way we created that kind of information for property and manufactured capital? There are good answers to these questions, answers that point in productive directions in need of wide exploration and analysis.

The short answer to both questions is that better, more scientifically rigorous measurement at the local level needs to be implemented in a context of traceability to universally uniform standards. To think global and act local simultaneously, we need an efficient and transparent way of seeing where we stand in the world relative to everyone else. Having measures expressed in comparable and meaningful units is an important part of how we think global while acting local.

So, for markets to punish and reward businesses in ways able to build human, social, and environmental value, we need to be able to price that value, to track returns on investments in it, and to own shares of it. To do that, we need a new intangible assets metric system that functions in a manner analogous to the existing metric system and other weights and measures standards. In the same way these standards guarantee high quality information on volume, weight, thermal units, and volts in grocery stores and construction sites, we need a new set of standards for human abilities, performances, and health; for social trust, commitment, and loyalty; and for the environment’s air and water processing services, fisheries, gene pools, etc.

Each industry needs an instrumentarium of tools and metrics that mediate relationships universally within its entire sphere of production and/or service. The obvious and immediate reaction to this proposal will likely be that this is impossible, that it would have been done by now if it was possible, and that anyone who proposes something like this is simply unrealistic, perhaps dangerously so. So, here we have another reason to add to those given in the June 8, 2011 issue of The Nation (http://www.thenation.com/article/161267/reimagining-capitalism-bold-ideas-new-economy) as to why bold ideas for a new economy cannot gain any traction in today’s political discourse.

So what basis in scientific authority might be found for this audacious goal of an intangible assets metric system? This blog’s postings offer multiple varieties of evidence and argument in this regard, so I’ll stick to more recent developments, namely, last week’s meeting of the International Measurement Confederation (IMEKO) in Jena, Germany. Membership in IMEKO is dominated by physicists, engineers, chemists, and clinical laboratorians who work in private industry, academia, and government weights and measures standards institutes.

Several IMEKO members past and present are involved with one or more of the seven or eight major international standards organizations responsible for maintaining and improving the metric system (the Systeme Internationale des Unites). Two initiatives undertaken by IMEKO and these standards organizations take up the matter at issue here concerning the audacious goal of standard units for human, social, and natural capital.

First, the recently released third edition of the International Vocabulary of Measurement (VIM, 2008) expands the range of the concepts and terms included to encompass measurement in the human and social sciences. This first effort was not well informed as to the nature of widely realized state of the art developments in measurement in education, health care, and the social sciences. What is important is that an invitation to further dialogue has been extended from the natural to the social sciences.

That invitation was unintentionally accepted and a second initiative advanced just as the new edition of the VIM was being released, in 2008. Members of three IMEKO technical committees (TC 1-7-13; those on Measurement Science, Metrology Education, and Health Care) cultivate a special interest in ideas on the human and social value of measurement. At their 2008 meeting in Annecy, France, I presented a paper (later published in revised form as Fisher, 2009) illustrating how, over the previous 50 years and more, the theory and practice of measurement in the social sciences had developed in ways capable of supporting convenient and useful universally uniform units for human, social, and natural capital.

The same argument was then advanced by my fellow University of Chicago alum, Nikolaus Bezruczko, at the 2009 IMEKO World Congress in Lisbon. Bezruczko and I both spoke at the 2010 TC 1-7-13 meeting in London, and last week our papers were joined by presentations from six of our colleagues at the 2011 IMEKO TC 1-7-13 meeting in Jena, Germany. Another fellow U Chicagoan, Mark Wilson, a long time professor in the Graduate School of Education at the University of California, Berkeley, gave an invited address contrasting four basic approaches to measurement in psychometrics, and emphasizing the value of methods that integrate substantive meaning with mathematical rigor.

Examples from education, health care, and business were then elucidated at this year’s meeting in Jena by myself, Bezruczko, Stefan Cano (University of Plymouth, England), Carl Granger (SUNY, Buffalo; paper presented by Bezruczko, a co-author), Thomas Salzberger (University of Vienna, Austria), Jack Stenner (MetaMetrics, Inc., Durham, NC, USA), and Gordon Cooper (University of Western Australia, Crawley, WA, Australia; paper presented by Fisher, a co-author).

The contrast between these presentations and those made by the existing IMEKO membership hinges on two primary differences in focus. The physicists and engineers take it for granted that all instrument calibration involves traceability to metrological reference standards. Dealing as they are with existing standards and physical or chemical materials that usually possess deterministically structured properties, issues of how to construct linear measures from ordinal observations never come up.

Conversely, the social scientists and psychometricians take it for granted that all instrument calibration involves evaluations of the capacity of ordinal observations to support the construction of linear measures. Dealing as they are with data from tests, surveys, and rating scale assessments, issues of how to relate a given instrument’s unit to a reference standard never come up.

Thus there is significant potential for mutually instructive dialogue between natural and social scientists in this context. Many areas of investigation in the natural sciences have benefited from the introduction of probabilistic concepts in recent decades, but there are perhaps important unexplored opportunities for the application of probabilistic measurement, as opposed to statistical, models. By taking advantage of probabilistic models’ special features, measurement in education and health care has begun to realize the benefit of broad generalizations of comparable units across grades, schools, tests, and curricula.

Though the focus of my interest here is in the capacity of better measurement to improve the efficiency of human, social, and natural capital markets, it may turn out that as many or more benefits will accrue in the natural sciences’ side of the conversation as in the social sciences’ side. The important thing for the time being is that the dialogue is started. New and irreversible mutual understandings between natural and social scientists have already been put on the record. It may happen that the introduction of a new supply of improved human, social, and natural capital metrics will help articulate the largely, as yet, unstated but nonetheless urgent demand for them.

Fisher, W. P., Jr. (2009, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Reimagining Capitalism Again, Part I: Reflections on Greider’s Soul of Capitalism

September 10, 2011

In his 2003 book, The Soul of Capitalism, William Greider wrote, “If capitalism were someday found to have a soul, it would probably be located in the mystic qualities of capital itself” (p. 94). The recurring theme in the book is that the resolution of capitalism’s deep conflicts must grow out as organic changes from the roots of capitalism itself.

In the book, Greider quotes Innovest’s Michael Kiernan as suggesting that the goal has to be re-engineering the DNA of Wall Street (p. 119). He says the key to doing this is good reliable information that has heretofore been unavailable but which will make social and environmental issues matter financially. The underlying problems of exactly what solid, high quality information looks like, where it comes from, and how it is created are not stated or examined, but the point, as Kiernan says, is that “the markets are pretty good at punishing and rewarding.” The objective is to use “the financial markets as an engine of reform and positive change rather than destruction.”

This objective is, of course, the focus of multiple postings in this blog (see especially this one and this one). From my point of view, capitalism indeed does have a soul and it is actually located in the qualities of capital itself. Think about it: if a soul is a spirit of something that exists independent of its physical manifestation, then the soul of capitalism is the fungibility of capital. Now, this fungibility is complex and ambiguous. It takes its strength and practical value from the way market exchange are represented in terms of currencies, monetary units that, within some limits, provide an objective basis of comparison useful for rewarding those capable of matching supply with demand.

But the fungibility of capital can also be dangerously misconceived when the rich complexity and diversity of human capital is unjustifiably reduced to labor, when the irreplaceable value of natural capital is unjustifiably reduced to land, and when the trust, loyalty, and commitment of social capital is completely ignored in financial accounting and economic models. As I’ve previously said in this blog, the concept of human capital is inherently immoral so far as it reduces real human beings to interchangeable parts in an economic machine.

So how could it ever be possible to justify any reduction of human, social, and natural value to a mere number? Isn’t this the ultimate in the despicable inhumanity of economic logic, corporate decision making, and, ultimately, the justification of greed? Many among us who profess liberal and progressive perspectives seem to have an automatic and reactionary prejudice of this kind. This makes these well-intentioned souls as much a part of the problem as those among us with sometimes just as well-intentioned perspectives that accept such reductionism as the price of entry into the game.

There is another way. Human, social, and natural value can be measured and made manageable in ways that do not necessitate totalizing reduction to a mere number. The problem is not reduction itself, but unjustified, totalizing reduction. Referring to all people as “man” or “men” is an unjustified reduction dangerous in the way it focuses attention only on males. The tendency to think and act in ways privileging males over females that is fostered by this sense of “man” shortchanges us all, and has happily been largely eliminated from discourse.

Making language more inclusive does not, however, mean that words lose the singular specificity they need to be able to refer to things in the world. Any given word represents an infinite population of possible members of a class of things, actions, and forms of life. Any simple sentence combining words into a coherent utterance then multiplies infinities upon infinities. Discourse inherently reduces multiplicities into texts of limited lengths.

Like any tool, reduction has its uses. Also like any tool, problems arise when the tool is allowed to occupy some hidden and unexamined blind spot from which it can dominate and control the way we think about everything. Critical thinking is most difficult in those instances in which the tools of thinking themselves need to be critically evaluated. To reject reduction uncritically as inherently unjustified is to throw the baby out with the bathwater. Indeed, it is impossible to formulate a statement of the rejection without simultaneously enacting exactly what is supposed to be rejected.

We have numerous ready-to-hand examples of how all reduction has been unjustifiably reduced to one homogenized evil. But one of the results of experiments in communal living in the 1960s and 1970s, as well as of the fall of the Soviet Union, was the realization that the centralized command and control of collectively owned community property cannot compete with the creativity engendered when individuals hold legal title to the fruits of their labors. If individuals cannot own the results of the investments they make, no one makes any investments.

In other words, if everything is owned collectively and is never reduced to individually possessed shares that can be creatively invested for profitable returns, then the system is structured so as to punish innovation and reward doing as little as possible. But there’s another way of thinking about the relation of the collective to the individual. The living soul of capitalism shows itself in the way high quality information makes it possible for markets to efficiently coordinate and align individual producers’ and consumers’ collective behaviors and decisions. What would happen if we could do that for human, social, and natural capital markets? What if “social capitalism” is more than an empty metaphor? What if capital institutions can be configured so that individual profit really does become the driver of socially responsible, sustainable economics?

And here we arrive at the crux of the problem. How do we create the high quality, solid information markets need to punish and reward relative to ethical and sustainable human, social, and environmental values? Well, what can we learn from the way we created that kind of information for property and manufactured capital? These are the questions taken up and explored in the postings in this blog, and in my scientific research publications and meeting presentations. In the near future, I’ll push my reflection on these questions further, and will explore some other possible answers to the questions offered by Greider and his readers in a recent issue of The Nation.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

New Opportunities for Job Creation and Prosperity

August 17, 2011

What can be done to create jobs and revive the economy? There is no simple, easy answer to this question. Creating busywork is nonsense. We need fulfilling occupations that meet the world’s demand for products and services. It is not easy to see how meaningful work can be systematically created on a broad scale. New energy efficiencies may lead to the cultivation of significant job growth, but it may be unwise to put all of our eggs in this one basket.

So how are we to solve this puzzle? What other areas in the economy might be ripe for the introduction of a new technology capable of supporting a wave of new productivity, like computers did in the 1980s, or the Internet in the 1990s? In trying to answer this question, simplicity and elegance are key factors in keeping things at a practical level.

For instance, we know we accomplish more working together as a team than as disconnected individuals. New jobs, especially new kinds of jobs, will have to be created via innovation. Innovation in science and industry is a team sport. So the first order of business in teaming up for job creation is to know the rules of the game. The economic game is played according to the rules of law embodied in property rights, scientific rationality, capital markets, and transportation/communications networks (see William Bernstein’s 2004 book, The Birth of Plenty). When these conditions are met, as they were in Europe and North America at the beginning of the nineteenth century, the stage is set for long term innovation and growth on a broad scale.

The second order of business is to identify areas in the economy that lack one or more of these four conditions, and that could reasonably be expected to benefit from their introduction. Education, health care, social services, and environmental management come immediately to mind. These industries are plagued with seemingly interminable inflationary spirals, which, no doubt, are at least in part caused by the inability of investors to distinguish between high and low performers. Money cannot flow to and reward programs producing superior results in these industries because they lack common product definitions and comparable measures of their results.

The problems these industries are experiencing are not specific to each of them in particular. Rather, the problem is a general one applicable across all industries, not just these. Traditionally, economic thinking focuses on three main forms of capital: land, labor, and manufactured products (including everything from machines, roads, and buildings to food, clothing, and appliances). Cash and credit are often thought of as liquid capital, but their economic value stems entirely from the access they provide to land, labor, and manufactured products.

Economic activity is not really, however, restricted to these three forms of capital. Land is far more than a piece of ground. What are actually at stake are the earth’s regenerative ecosystems, with the resources and services they provide. And labor is far more than a pair of skilled hands; people bring a complex mix of abilities, motivations, and health to bear in their work. Finally, this scheme lacks an essential element: the trust, loyalty, and commitment required for even the smallest economic exchange to take place. Without social capital, all the other forms of capital (human, natural, and manufactured, including property) are worthless. Consistent, sustainable, and socially responsible economic growth requires that all four forms of capital be made accountable in financial spreadsheets and economic models.

The third order of business, then, is to ask if the four conditions laying out the rules for the economic game are met in each of the four capital domains. The table below suggests that all four conditions are fully met only for manufactured products. They are partially met for natural resources, such as minerals, timber, fisheries, etc., but not at all for nature’s air and water purification systems or broader genetic ecosystem services.

 Table

Existing Conditions Relevant to Conceiving a New Birth of Plenty, by Capital Domains

Human

Social

Natural

Manufactured

Property rights

No

No

Partial

Yes

Scientific rationality

Partial

Partial

Partial

Yes

Capital markets

Partial

Partial

Partial

Yes

Transportation & communication networks

Partial

Partial

Partial

Yes

That is, no provisions exist for individual ownership of shares in the total available stock of air and water, or of forest, watershed, estuary, and other ecosystem service outcomes. Nor do any individuals have free and clear title to their most personal properties, the intangible abilities, motivations, health, and trust most essential to their economic productivity. Aggregate statistics are indeed commonly used to provide a basis for policy and research in human, social, and natural capital markets, but falsifiable models of individually applicable unit quantities are not widely applied. Scientifically rational measures of our individual stocks of intangible asset value will require extensive use of these falsifiable models in calibrating the relevant instrumentation.

Without such measures, we cannot know how many shares of stock in these forms of capital we own, or what they are worth in dollar terms. We lack these measures, even though decades have passed since researchers first established firm theoretical and practical foundations for them. And more importantly, even when scientifically rational individual measures can be obtained, they are never expressed in terms of a unit standardized for use within a given market’s communications network.

So what are the consequences for teams playing the economic game? High performance teams’ individual decisions and behaviors are harmonized in ways that cannot otherwise be achieved only when unit amounts, prices, and costs are universally comparable and publicly available. This is why standard currencies and exchange rates are so important.

And right here we have an insight into what we can do to create jobs. New jobs are likely going to have to be new kinds of jobs resulting from innovations. As has been detailed at length in recent works such as Surowiecki’s 2004 book, The Wisdom of Crowds, innovation in science and industry depends on standards. Standards are common languages that enable us to multiply our individual cognitive powers into new levels of collective productivity. Weights and measures standards are like monetary currencies; they coordinate the exchange of value in laboratories and businesses in the same way that dollars do in the US economy.

Applying Bernstein’s four conditions for economic growth to intangible assets, we see that a long term program for job creation then requires

  1. legislation establishing human, social, and natural capital property rights, and an Intangible Assets Metrology System;
  2. scientific research into consensus standards for measuring human, social, and natural capital;
  3. venture capital educational and marketing programs; and
  4. distributed information networks and computer applications through which investments in human, social, and natural capital can be tracked and traded in accord with the rule of law governing property rights and in accord with established consensus standards.

Of these four conditions, Bernstein (p. 383) points to property rights as being the most difficult to establish, and the most important for prosperity. Scientific results are widely available in online libraries. Capital can be obtained from investors anywhere. Transportation and communications services are available commercially.

But valid and verifiable means of representing legal title to privately owned property is a problem often not yet solved even for real estate in many Third World and former communist countries (see De Soto’s 2000 book, The Mystery of Capital). Creating systems for knowing the quality and quantity of educational, health care, social, and environmental service outcomes is going to be a very difficult process. It will not be impossible, however, and having the problem identified advances us significantly towards new economic possibilities.

We need leaders able and willing to formulate audacious goals for new economic growth from ideas such as these. We need enlightened visionaries able to see our potentials from a new perspective, and who can reflect our new self-image back at us. When these leaders emerge—and they will, somewhere, somehow—the imaginations of millions of entrepreneurial thinkers and actors will be fired, and new possibilities will unfold.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Science, Public Goods, and the Monetization of Commodities

August 13, 2011

Though I haven’t read Philip Mirowski’s new book yet (Science-Mart: Privatizing American Science. Cambridge, MA: Harvard University Press, 2011), a statement in the cover blurb given at Amazon.com got me thinking. I can’t help but wonder if there is another way of interpreting neoliberal ideology’s “radically different view of knowledge and discovery: [that] the fruits of scientific investigation are not a public good that should be freely available to all, but are commodities that could be monetized”?

Corporations and governments are not the only ones investing in research and new product development, and they are not the only ones who could benefit from the monetization of the fruits of scientific investigation. Individuals make these investments as well, and despite ostensible rights to private ownership, no individuals anywhere have access to universally comparable, uniformly expressed, and scientifically valid information on the quantity or quality of the literacy, health, community, or natural capital that is rightfully theirs. They accordingly also then do not have any form of demonstrable legal title to these properties. In the same way that corporations have successfully advanced their economic interests by seeing that patent and intellectual property laws were greatly strengthened, so, too, ought individuals and communities advance their economic interests by, first, expanding the scope of weights and measures standards to include intangible assets, and second, by strengthening laws related to the ownership of privately held stocks of living capital.

The nationalist and corporatist socialization of research will continue only as long as social capital, human capital, and natural capital are not represented in the universally uniform common currencies and transparent media that could be provided by an intangible assets metric system. When these forms of capital are brought to economic life in fungible measures akin to barrels, bushels, or kilowatts, then they will be monetized commodities in the full capitalist sense of the term, ownable and purchasable products with recognizable standard definitions, uniform quantitative volumes, and discernable variations in quality. Then, and only then, will individuals gain economic control over their most important assets. Then, and only then, will we obtain the information we need to transform education, health care, social services, and human and natural resource management into industries in which quality is appropriately rewarded. Then, and only then, will we have the means for measuring genuine progress and authentic wealth in ways that correct the insufficiencies of the GNP/GDP indexes.

The creation of efficiently functioning markets for all forms of capital is an economic, political, and moral necessity (see Ekins, 1992 and others). We say we manage what we measure, but very little effort has been put into measuring (with scientific validity and precision in universally uniform and accessible aggregate terms) 90% of the capital resources under management: human abilities, motivations, and health; social commitment, loyalty, and trust; and nature’s air and water purification and ecosystem services (see Hawken, Lovins, & Lovins, 1999, among others). All human suffering, sociopolitical discontent, and environmental degradation are rooted in the same common cause: waste (see Hawken, et al., 1999). To apply lean thinking to removing the wasteful destruction of our most valuable resources, we must measure these resources in ways that allow us to coordinate and align our decisions and behaviors virtually, at a distance, with no need for communicating and negotiating the local particulars of the hows and whys of our individual situations. For more information on these ideas, search “living capital metrics” and see works like the following:

Ekins, P. (1992). A four-capital model of wealth creation. In P. Ekins & M. Max-Neef (Eds.), Real-life economics: Understanding wealth creation (pp. 147-15). London: Routledge.

Fisher, W. P., Jr. (2009). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Hawken, P., Lovins, A., & Lovins, H. L. (1999). Natural capitalism: Creating the next industrial revolution. New York: Little, Brown, and Co.

Latour, B. (1987). Science in action: How to follow scientists and engineers through society. New York: Cambridge University Press.

Latour, B. (2005). Reassembling the social: An introduction to Actor-Network-Theory. (Clarendon Lectures in Management Studies). Oxford, England: Oxford University Press.

Miller, P., & O’Leary, T. (2007). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-34.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Translating Gingrich’s Astute Observations on Health Care

June 30, 2011

“At the very heart of transforming health and healthcare is one simple fact: it will require a commitment by the federal government to invest in science and discovery. The period between investment and profit for basic research is too long for most companies to ever consider making the investment. Furthermore, truly basic research often produces new knowledge that everyone can use, so there is no advantage to a particular company to make the investment. The result is that truly fundamental research is almost always a function of government and foundations because the marketplace discourages focusing research in that direction” (p. 169 in Gingrich, 2003).

Gingrich says this while recognizing (p. 185) that:

“Money needs to be available for highly innovative ‘out of the box’ science. Peer review is ultimately a culturally conservative and risk-averse model. Each institution’s director should have a small amount of discretionary money, possibly 3% to 5% of their budget, to spend on outliers.”

He continues (p. 170), with some important elaborations on the theme:

“America’s economic future is a direct function of our ability to take new scientific research and translate it into entrepreneurial development.”

“The [Hart/Rudman] Commission’s second conclusion was that the failure to invest in scientific research and the failure to reform math and science education was the second largest threat to American security [behind terrorism].”

“Our goal [in the Hart/Rudman Commission] was to communicate the centrality of the scientific endeavor to American life and the depth of crisis we believe threatens the math and science education system. The United States’ ability to lead today is a function of past investments in scientific research and math and science education. There is no reason today to believe we will automatically maintain that lead especially given our current investments in scientific research and the staggering levels of our failures in math and science education.”

“Our ability to lead in 2025 will be a function of current decisions. Increasing our investment in science and discovery is a sound and responsible national security policy. No other federal expenditure will do more to create jobs, grow wealth, strengthen our world leadership, protect our environment, promote better education, or ensure better health for the country. We must make this increase now.”

On p. 171, this essential point is made:

“In health and healthcare, it is particularly important to increase our investment in research.”

This is all good. I agree completely. What NG says is probably more true than he realizes, in four ways.

First, the scientific capital created via metrology, controlled via theory, and embodied in technological instruments is the fundamental driver of any economy. The returns on investments in metrological improvements range from 40% to over 400% (NIST, 1996). We usually think of technology and technical standards in terms of computers, telecommunications, and electronics, but there actually is not anything at all in our lives untouched by metrology, since the air, water, food, clothing, roads, buildings, cars, appliances, etc. are all monitored, maintained, and/or manufactured relative to various kinds of universally uniform standards. NG is, as most people are, completely unaware that such standards are feasible and already under development for health, functionality, quality of life, quality of care, math and science education, etc. Given the huge ROIs associated with metrological improvements, there ought to be proportionately huge investments being made in metrology for human, social, and natural capital.

Second, NG’s point concerning national security is right on the mark, though for reasons that go beyond the ones he gives. There are very good reasons for thinking investments in, and meaningful returns from, the basic science for human, social, and natural capital metrology could be expected to undercut the motivations for terrorism and the retreats into fundamentalisms of various kinds that emerge in the face of the failures of liberal democracy (Marty, 2001). Making all forms of capital measured, managed, and accountable within a common framework accessible to everyone everywhere could be an important contributing factor, emulating the property titling rationale of DeSoto (1989, 2000) and the support for distributed cognition at the social level provided by metrological networks (Latour, 1987, 2005; Magnus, 2007), The costs of measurement can be so high as to stifle whole economies (Barzel, 1982), which is, broadly speaking, the primary problem with the economies of education, health care, social services, philanthropy, and environmental management (see, for instance, regarding philanthropy, Goldberg, 2009). Building the legal and financial infrastructure for low-friction titling and property exchange has become a basic feature of World Bank and IMF projects. My point, ever since I read De Soto, has been that we ought to be doing the same thing for human, social, and natural capital, facilitating explicit ownership of the skills, motivations, health, trust, and environmental resources that are rightfully the property of each of us, and that similar effects on national security ought to follow.

Third, NG makes an excellent point when he stresses the need for health and healthcare to be individual-centered, saying that, in contrast with the 20th-century healthcare system, “In the 21st Century System of Health and Healthcare, you will own your medical record, control your healthcare dollars, and be able to make informed choices about healthcare providers.” This is basically equivalent to saying that health capital needs to be fungible, and it can’t be fungible, of course, without a metrological infrastructure that makes every measure of outcomes, quality of life, etc. traceable to a reference standard. Individual-centeredness is also, of course, what distinguishes proper measurement from statistics. Measurement supports inductive inference, from the individual to the population, where statistics are deductive, going from the population to the individual (Fisher & Burton, 2010; Fisher, 2010). Individual-centered healthcare will never go anywhere without properly calibrated instrumentation and the traceability to reference standards that makes measures meaningful.

Fourth, NG repeatedly indicates how appalled he is at the slow pace of change in healthcare, citing research showing that it can take up to 17 years for doctors to adopt new procedures. I contend that this is an effect of our micromanagement of dead, concrete forms of capital. In a fluid living capital market, not only will consumers be able to reward quality in their purchasing decisions by having the information they need when they need it and in a form they can understand, but the quality improvements will be driven from the provider side in much the same way. As Brent James has shown, readily available, meaningful, and comparable information on natural variation in outcomes makes it much easier for providers to improve results and reduce the variation in them. Despite its central importance and the many years that have passed, however, the state of measurement in health care remains in dire need of dramatic improvement. Fryback (1993, p. 271; also see Kindig, 1999) succinctly put the point, observing that the U.S.

“health care industry is a $900 + billion [over $2.5 trillion in 2009 (CMS, 2011] endeavor that does not know how to measure its main product: health. Without a good measure of output we cannot truly optimize efficiency across the many different demands on resources.”

Quantification in health care is almost universally approached using methods inadequate to the task, resulting in ordinal and scale-dependent scores that cannot take advantage of the objective comparisons provided by invariant, individual-level measures (Andrich, 2004). Though data-based statistical studies informing policy have their place, virtually no effort or resources have been invested in developing individual-level instruments traceable to universally uniform metrics that define the outcome products of health care. These metrics are key to efficiently harmonizing quality improvement, diagnostic, and purchasing decisions and behaviors in the manner described by Berwick, James, and Coye (2003) without having to cumbersomely communicate the concrete particulars of locally-dependent scores (Heinemann, Fisher, & Gershon, 2006). Metrologically-based common product definitions will finally make it possible for quality improvement experts to implement analogues of the Toyota Production System in healthcare, long presented as a model but never approached in practice (Coye, 2001).

So, what does all of this add up to? A new division for human, social, and natural capital in NIST is in order, with extensive involvement from NIH, CMS, AHRQ, and other relevant agencies. Innovative measurement methods and standards are the “out of the box” science NG refers to. Providing these tools is the definitive embodiment of an appropriate role for government. These are the kinds of things that we could have a productive conversation with NG about, it seems to me….

References

 Andrich, D. (2004, January). Controversy and the Rasch model: A characteristic of incompatible paradigms? Medical Care, 42(1), I-7–I-16.

Barzel, Y. (1982). Measurement costs and the organization of markets. Journal of Law and Economics, 25, 27-48.

Berwick, D. M., James, B., & Coye, M. J. (2003, January). Connections between quality measurement and improvement. Medical Care, 41(1 (Suppl)), I30-38.

Centers for Medicare and Medicaid Services. (2011). National health expenditure data: NHE fact sheet. Retrieved 30 June 2011, from https://www.cms.gov/NationalHealthExpendData/25_NHE_Fact_Sheet.asp.

Coye, M. J. (2001, November/December). No Toyotas in health care: Why medical care has not evolved to meet patients’ needs. Health Affairs, 20(6), 44-56.

De Soto, H. (1989). The other path: The economic answer to terrorism. New York: Basic Books.

De Soto, H. (2000). The mystery of capital: Why capitalism triumphs in the West and fails everywhere else. New York: Basic Books.

Fisher, W. P., Jr. (2010). Statistics and measurement: Clarifying the differences. Rasch Measurement Transactions, 23(4), 1229-1230 [http://www.rasch.org/rmt/rmt234.pdf].

Fisher, W. P., Jr., & Burton, E. (2010). Embedding measurement within existing computerized data systems: Scaling clinical laboratory and medical records heart failure data to predict ICU admission. Journal of Applied Measurement, 11(2), 271-287.

Fryback, D. (1993). QALYs, HYEs, and the loss of innocence. Medical Decision Making, 13(4), 271-2.

Gingrich, N. (2008). Real change: From the world that fails to the world that works. Washington, DC: Regnery Publishing.

Goldberg, S. H. (2009). Billions of drops in millions of buckets: Why philanthropy doesn’t advance social progress. New York: Wiley.

Heinemann, A. W., Fisher, W. P., Jr., & Gershon, R. (2006). Improving health care quality with outcomes management. Journal of Prosthetics and Orthotics, 18(1), 46-50 [http://www.oandp.org/jpo/library/2006_01S_046.asp].

Kindig, D. A. (1997). Purchasing population health. Ann Arbor, Michigan: University of Michigan Press.

Kindig, D. A. (1999). Purchasing population health: Aligning financial incentives to improve health outcomes. Nursing Outlook, 47, 15-22.

Latour, B. (1987). Science in action: How to follow scientists and engineers through society. New York: Cambridge University Press.

Latour, B. (2005). Reassembling the social: An introduction to Actor-Network-Theory. (Clarendon Lectures in Management Studies). Oxford, England: Oxford University Press.

Magnus, P. D. (2007). Distributed cognition and the task of science. Social Studies of Science, 37(2), 297-310.

Marty, M. (2001). Why the talk of spirituality today? Some partial answers. Second Opinion, 6, 53-64.

Marty, M., & Appleby, R. S. (Eds.). (1993). Fundamentalisms and society: Reclaiming the sciences, the family, and education. The fundamentalisms project, vol. 2. Chicago: University of Chicago Press.

National Institute for Standards and Technology. (1996). Appendix C: Assessment examples. Economic impacts of research in metrology. In Committee on Fundamental Science, Subcommittee on Research (Ed.), Assessing fundamental science: A report from the Subcommittee on Research, Committee on Fundamental Science. Washington, DC: National Standards and Technology Council

[http://www.nsf.gov/statistics/ostp/assess/nstcafsk.htm#Topic%207; last accessed 30 June 2011].

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Subjectivity, Objectivity, Performance Measurement and Markets

April 23, 2011

Though he attributes his insight to a colleague (George Baker), Michael Jensen has once more succinctly stated a key point I’ve repeatedly tried to convey in my blog posts. As Jensen (2003, p. 397) puts it,

…any activity whose performance can be perfectly measured objectively does not belong inside the firm. If its performance can be adequately measured objectively it can be spun out of the firm and contracted for in a market transaction.

YES!! Though nothing is measured perfectly, my message has been a series of variations on precisely this theme. Well-measured property, services, products, and commodities in today’s economy are associated with scientific, legal and financial structures and processes that endow certain representations with meaningful indications of kind, amount, value and ownership. It is further well established that the ownership of the products of one’s creative endeavors is essential to economic advancement and the enlargement of the greater good. Markets could not exist without objective measures, and thus we have the central commercial importance of metric standards.

The improved measurement of service outcomes and performances is going to create an environment capable of supporting similar legal and financial indications of value and ownership. Many of the causes of today’s economic crises can be traced to poor quality information and inadequate measures of human, social, and natural value. Bringing publicly verifiable scientific data and methods to bear on the tuning of instruments for measuring these forms of value will make their harmonization much simpler than it ever could be otherwise. Social and environmental costs and value have been relegated to the marginal status of externalities because they have not been measured in ways that made it possible to bring them onto the books and into the models.

But the stage is being set for significant changes. Decades of research calibrating objective measures of a wide variety of performances and outcomes are inexorably leading to the creation of an intangible assets metric system (Fisher, 2009a, 2009b, 2011). Meaningful and rigorous individual-level universally available uniform metrics for each significant intangible asset (abilities, health, trustworthiness, etc.) will

(a) make it possible for each of us to take full possession, ownership, and management control of our investments in and returns from these forms of capital,

(b) coordinate the decisions and behaviors of consumers, researchers, and quality improvement specialists to better match supply and demand, and thereby

(c) increase the efficiency of human, social, and natural capital markets, harnessing the profit motive for the removal of wasted human potential, lost community coherence, and destroyed environmental quality.

Jensen’s observation emerges in his analysis of performance measures as one of three factors in defining the incentives and payoffs for a linear compensation plan (the other two being the intercept and the slope of the bonus line relating salary and bonus to the performance measure targets). The two sentences quoted above occur in this broader context, where Jensen (2003, pp. 396-397) states that,

…we must decide how much subjectivity will be involved in each performance measure. In considering this we must recognize that every performance measurement system in a firm must involve an important amount of subjectivity. The reason, as my colleague George Baker has pointed out, is that any activity whose performance can be perfectly measured objectively does not belong inside the firm. If its performance can be adequately measured objectively it can be spun out of the firm and contracted for in a market transaction. Thus, one of the most important jobs of managers, complementing objective measures of performance with managerial subjective evaluation of subtle interdependencies and other factors is exactly what most managers would like to avoid. Indeed, it is this factor along with efficient risk bearing that is at the heart of what gives managers and firms an advantage over markets.

Jensen is here referring implicitly to the point Coase (1990) makes regarding the nature of the firm. A firm can be seen as a specialized market, one in which methods, insights, and systems not generally available elsewhere are employed for competitive advantage. Products are brought to market competitively by being endowed with value not otherwise available. Maximizing that value is essential to the viability of the firm.

Given conflicting incentives and the mixed messages of the balanced scorecard, managers have plenty of opportunities for creatively avoiding the difficult task of maximizing the value of the firm. Jensen (2001) shows that attending to the “managerial subjective evaluation of subtle interdependencies” is made impossibly complex when decisions and behaviors are pulled in different directions by each stakeholder’s particular interests. Other research shows that even traditional capital structures are plagued by the mismeasurement of leverage, distress costs, tax shields, and the speed with which individual firms adjust their capital needs relative to leverage targets (Graham & Leary, 2010). The objective measurement of intangible assets surely seems impossibly complex to those familiar with these problems.

But perhaps the problems associated with measuring traditional capital structures are not so different from those encountered in the domain of intangible assets. In both cases, a particular kind of unjustified self-assurance seems always to attend the mere availability of numeric data. To the unpracticed eye, numbers seem to always behave the same way, no matter if they are rigorous measures of physical commodities, like kilowatts, barrels, or bushels, or if they are currency units in an accounting spreadsheet, or if they are percentages of agreeable responses to a survey question. The problem is that, when interrogated in particular ways with respect to the question of how much of something is supposedly measured, these different kinds of numbers give quite markedly different kinds of answers.

The challenge we face is one of determining what kind of answers we want to the questions we have to ask. Presumably, we want to ask questions and get answers pertinent to obtaining the information we need to manage life creatively, meaningfully, effectively and efficiently. It may be useful then, as a kind of thought experiment, to make a bold leap and imagine a scenario in which relevant questions are answered with integrity, accountability, and transparency.

What will happen when the specialized expertise of human resource professionals is supplanted by a market in which meaningful and comparable measures of the hireability, retainability, productivity, and promotability of every candidate and employee are readily available? If Baker and Jensen have it right, perhaps firms will no longer have employees. This is not to say that no one will work for pay. Instead, firms will contract with individual workers at going market rates, and workers will undoubtedly be well aware of the market value of their available shares of their intangible assets.

A similar consequence follows for the social safety net and a host of other control, regulatory, and policing mechanisms. But we will no longer be stuck with blind faith in the invisible hand and market efficiency, following the faith of those willing to place their trust and their futures in the hands of mechanisms they only vaguely understand and cannot control. Instead, aggregate effects on individuals, communities, and the environment will be tracked in publicly available and critically examined measures, just as stocks, bonds, and commodities are tracked now.

Previous posts in this blog explore the economic possibilities that follow from having empirically substantiated, theoretically predictable, and instrumentally mediated measures embodying broad consensus standards. What we will have for human, social, and natural capital will be the same kind of objective measures that have made markets work as well as they have thus far. It will be a whole new ball game when profits become tied to human, social, and environmental outcomes.

References

Coase, R. (1990). The firm, the market, and the law. Chicago: University of Chicago Press.

Fisher, W. P., Jr. (2009a, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P.. Jr. (2009b). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (Tech. Rep. No. http://www.livingcapitalmetrics.com/images/FisherNISTWhitePaper2.pdf). New Orleans: LivingCapitalMetrics.com.

Fisher, W. P., Jr. (2010, 22 November). Meaningfulness, measurement, value seeking, and the corporate objective function: An introduction to new possibilities. Available at http://ssrn.com/abstract=1713467.

Fisher, W. P., Jr. (2011). Bringing human, social, and natural capital to life: Practical consequences and opportunities. Journal of Applied Measurement, 12(1), in press.

Graham, J. R., & Leary, M. T. (2010, 21 December). A review of empirical capital structure research and directions for the future. Available at http://ssrn.com/abstract=1729388.

Jensen, M. C. (2001, Fall). Value maximization, stakeholder theory, and the corporate objective function. Journal of Applied Corporate Finance, 14(3), 8-21.

Jensen, M. C. (2003). Paying people to lie: The truth about the budgeting process. European Financial Management, 9(3), 379-406.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Parameterizing Perfection: Practical Applications of a Mathematical Model of the Lean Ideal

April 2, 2010

To properly pursue perfection, we need to parameterize it. That is, taking perfection as the ideal, unattainable standard against which we judge our performance is equivalent to thinking of it as a mathematical model. Organizations are intended to realize their missions independent of the particular employees, customers, suppliers, challenges, products, etc. they happen to engage with at any particular time. Organizational performance measurement (Spitzer, 2007) ought to then be designed in terms of a model that posits, tests for, and capitalizes on the always imperfectly realized independence of those parameters.

Lean thinking (Womack & Jones, 1996) focuses on minimizing waste and maximizing value. At every point at which resources are invested in processes, services, or products, the question is asked, “What value is added here?” Resources are wasted when no value is added, when they can be removed with no detrimental effect on the value of the end product. In their book, Natural Capitalism: Creating the Next Industrial Revolution, Hawken, Lovins, and Lovins (1999, p. 133) say

“Lean thinking … changes the standard for measuring corporate success. … As they [Womack and Jones] express it: ‘Our earnest advice to lean firms today is simple. To hell with your competitors; compete against perfection by identifying all activities that are muda [the Japanese term for waste used in Toyota’s landmark quality programs] and eliminating them. This is an absolute rather than a relative standard which can provide the essential North Star for any organization.”

Further, every input should “be presumed waste until shown otherwise.” A constant, ongoing, persistent pressure for removing waste is the basic characteristic of lean thinking. Perfection is never achieved, but it aptly serves as the ideal against which progress is measured.

Lean thinking sounds a lot like a mathematical model, though it does not seem to have been written out in a mathematical form, or used as the basis for calibrating instruments, estimating measures, evaluating data quality, or for practical assessments of lean organizational performance. The closest anyone seems to have come to parameterizing perfection is in the work of Genichi Taguchi (Ealey, 1988), which has several close parallels with Rasch measurement (Linacre, 1993).  But meaningful and objective quantification, as required and achieved in the theory and practice of fundamental measurement (Andrich, 2004; Bezruczko, 2005; Bond & Fox 2007; Smith & Smith, 2004; Wilson, 2005; Wright, 1999), in fact asserts abstract ideals of perfection as models of organizational, social, and psychological processes in education, health care, marketing, etc. These models test the extent to which outcomes remain invariant across examination or survey questions, across teachers, students, schools, and curricula, or across treatment methods, business processes, or policies.

Though as yet implemented only to a limited extent in business (Drehmer, Belohlav, James, & Coye, 2000; Drehmer & Deklava, 2001;  Lunz & Linacre, 1998; Salzberger, 2009), advanced measurement’s potential rewards are great. Fundamental measurement theory has been successfully applied in research and practice thousands of times over the last 40 years and more, including in very large scale assessments and licensure/certification applications (Adams, Wu, & Macaskill, 1997; Masters, 2007; Smith, Julian, Lunz, et al., 1994). These successes speak to an opportunity for making broad improvements in outcome measurement that could provide more coherent product definition, and significant associated opportunities for improving product quality and the efficiency with which it is produced, in the manner that has followed from the use of fundamental measures in other industries.

Of course, processes and outcomes are never implemented or obtained with perfect consistency. This would be perfectly true only in a perfect world. But to pursue perfection, we need to parameterize it. In other words, to raise the bar in any area of performance assessment, we have to know not only what direction is up, but we also need to know when we have raised the bar far enough. But we cannot tell up from down, we do not know how much to raise the bar, and we cannot properly evaluate the effects of lean experiments when we have no way of locating measures on a number line that embodies the lean ideal.

To think together collectively in ways that lead to significant new innovations, to rise above what Jaron Lanier calls the “global mush” of confused and self-confirming hive thinking, we need the common languages of widely accepted fundamental measures of the relevant processes and outcomes, measures that remain constant across samples of customers, patients, employees, students, etc., and across products, sales techniques, curricula, treatment processes, assessment methods, and brands of instrument.

We are all well aware that the consequences of not knowing where the bar is, of not having product definitions, can be disastrous. In many respects, as I’ve said previously in this blog, the success or failure of health care reform hinges on getting measurement right. The Institute of Medicine report, To Err is Human, of several years ago stresses the fact that system failures pose the greatest threat to safety in health care because they lead to human errors. When a system as complex as health care lacks a standard product definition, and product delivery is fragmented across multiple providers with different amounts and kinds of information in different settings, the system becomes dangerously cumbersome and over-complicated, with unacceptably wide variations and errors in its processes and outcomes, not to even speak of its economic inefficiency.

In contrast with the widespread use of fundamental measures in the product definitions of other industries, health care researchers typically implement neither the longstanding, repeatedly proven, and mathematically rigorous models of fundamental measurement theory nor the metrological networks through which reference standard metrics are engineered. Most industries carefully define, isolate, and estimate the parameters of their products, doing so in ways 1) that ensure industry-wide comparability and standardization, and 2) that facilitate continuous product improvement by revealing multiple opportunities for enhancement. Where organizations in other industries manage by metrics and thereby keep their eyes on the ball of product quality, health care organizations often manage only their own internal processes and cannot in fact bring the product quality ball into view.

In his message concerning the Institute for Healthcare Improvement’s Pursuing Perfection project a few years ago, Don Berwick, like others (Coye, 2001; Coye & Detmer, 1998), observed that health care does not yet have an organization setting new standards in the way that Toyota did for the auto industry in the 1970s. It still doesn’t, of course. Given the differences between the auto and health care industries uses of fundamental measures of product quality and associated abilities to keep their eyes on the quality ball, is it any wonder then, that no one in health care has yet hit a home run? It may well be that no one will hit a home run in health care until reference standard measures of product quality are devised.

The need for reference standard measures in uniform data systems is crucial, and the methods for obtaining them are widely available and well-known. So what is preventing the health care industry from adopting and deploying them? Part of the answer is the cost of the initial investment required. In 1980, metrology comprised about six percent of the U.S. gross national product (Hunter, 1980). In the period from 1981 to 1994, annual expenditures on research and development in the U.S. were less than three percent of the GNP, and non-defense R&D was about two percent (NIST Subcommittee on Research, National Science and Technology Council, 1996). These costs, however, must be viewed as investments from which high rates of return can be obtained (Barber, 1987; Gallaher, Rowe, Rogozhin, et al., 2007; Swann, 2005).

For instance, the U.S. National Institute of Standards and Technology estimated the economic impact of 12 areas of research in metrology, in four broad areas including semiconductors, electrical calibration and testing, optical industries, and computer systems (NIST, 1996, Appendix C; also see NIST, 2003). The median rate of return in these 12 areas was 147 percent, and returns ranged from 41 to 428 percent. The report notes that these results compare favorably with those obtained in similar studies of return rates from other public and private research and development efforts. Even if health care metrology produces only a small fraction of the return rate produced in physical metrology, its economic impact could still amount to billions of dollars annually. The proposed pilot projects therefore focus on determining what an effective health care outcomes metrology system should look like. What should its primary functions be? What should it cost? What rates of return could be expected from it?

Metrology, the science of measurement (Pennella, 1997), requires 1) that instruments be calibrated within individual laboratories so as to isolate and estimate the values of the required parameters (Wernimont, 1978); and 2) that individual instruments’ capacities to provide the same measure for the same amount, and so be traceable to a reference standard, be established and monitored via interlaboratory round-robin trials (Mandel, 1978).

Fundamental measurement has already succeeded in demonstrating the viability of reference standard measures of health outcomes, measures whose meaningfulness does not depend on the particular samples of items employed or patients measured. Though this work succeeds as far as it goes, it being done in a context that lacks any sense of the need for metrological infrastructure. Health care needs networks of scientists and technicians collaborating not only in the first, intralaboratory phase of metrological work, but also in the interlaboratory trials through which different brands or configurations of instruments intended to measure the same variable would be tuned to harmoniously produce the same measure for the same amount.

Implementation of the two phases of metrological innovation in health care would then begin with the intralaboratory calibration of existing and new instruments for measuring overall organizational performance, quality of care, and patients’ health status, quality of life, functionality, etc.  The second phase takes up the interlaboratory equating of these instruments, and the concomitant deployment of reference standard units of measurement throughout a health care system and the industry as a whole. To answer questions concerning health care metrology’s potential returns on investment, the costs for, and the savings accrued from, accomplishing each phase of each pilot will be tracked or estimated.

When instruments measuring in universally uniform, meaningful units are put in the hands of clinicians, a new scientific revolution will occur in medicine. It will be analogous to previous ones associated with the introduction of the thermometer and the instruments of optometry and the clinical laboratory. Such tools will multiply many times over the quality improvement methods used by Brent James, touted as holding the key to health care reform in a recent New York Times profile. Instead of implicitly hypothesizing models of perfection and assessing performance relative to them informally, what we need is a new science that systematically implements the lean ideal on industry-wide scales. The future belongs to those who master these techniques.

References

Adams, R. J., Wu, M. L., & Macaskill, G. (1997). Scaling methodology and procedures for the mathematics and science scales. In M. O. Martin & D. L. Kelly (Eds.), Third International Mathematics and Science Study Technical Report: Vol. 2: Implementation and Analysis – Primary and Middle School Years (pp. 111-145). Chestnut Hill, MA: Boston College.

Andrich, D. (2004, January). Controversy and the Rasch model: A characteristic of incompatible paradigms? Medical Care, 42(1), I-7–I-16.

Barber, J. M. (1987). Economic rationale for government funding of work on measurement standards. In R. Dobbie, J. Darrell, K. Poulter & R. Hobbs (Eds.), Review of DTI work on measurement standards (p. Annex 5). London: Department of Trade and Industry.

Berwick, D. M., James, B., & Coye, M. J. (2003, January). Connections between quality measurement and improvement. Medical Care, 41(1 (Suppl)), I30-38.

Bezruczko, N. (Ed.). (2005). Rasch measurement in health sciences. Maple Grove, MN: JAM Press.

Bond, T., & Fox, C. (2007). Applying the Rasch model: Fundamental measurement in the human sciences, 2d edition. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Coye, M. J. (2001, November/December). No Toyotas in health care: Why medical care has not evolved to meet patients’ needs. Health Affairs, 20(6), 44-56.

Coye, M. J., & Detmer, D. E. (1998). Quality at a crossroads. The Milbank Quarterly, 76(4), 759-68.

Drehmer, D. E., Belohlav, J. A., & Coye, R. W. (2000, Dec). A exploration of employee participation using a scaling approach. Group & Organization Management, 25(4), 397-418.

Drehmer, D. E., & Deklava, S. M. (2001, April). A note on the evolution of software engineering practices. Journal of Systems and Software, 57(1), 1-7.

Ealey, L. A. (1988). Quality by design: Taguchi methods and U.S. industry. Dearborn MI: ASI Press.

Gallaher, M. P., Rowe, B. R., Rogozhin, A. V., Houghton, S. A., Davis, J. L., Lamvik, M. K., et al. (2007). Economic impact of measurement in the semiconductor industry (Tech. Rep. No. 07-2). Gaithersburg, MD: National Institute for Standards and Technology.

Hawken, P., Lovins, A., & Lovins, H. L. (1999). Natural capitalism: Creating the next industrial revolution. New York: Little, Brown, and Co.

Hunter, J. S. (1980, November). The national system of scientific measurement. Science, 210(21), 869-874.

Linacre, J. M. (1993). Quality by design: Taguchi and Rasch. Rasch Measurement Transactions, 7(2), 292.

Lunz, M. E., & Linacre, J. M. (1998). Measurement designs using multifacet Rasch modeling. In G. A. Marcoulides (Ed.), Modern methods for business research. Methodology for business and management (pp. 47-77). Mahwah, New Jersey: Lawrence Erlbaum Associates, Inc.

Mandel, J. (1978, December). Interlaboratory testing. ASTM Standardization News, 6, 11-12.

Masters, G. N. (2007). Special issue: Programme for International Student Assessment (PISA). Journal of Applied Measurement, 8(3), 235-335.

National Institute for Standards and Technology (NIST). (1996). Appendix C: Assessment examples. Economic impacts of research in metrology. In C. o. F. S. Subcommittee on Research (Ed.), Assessing fundamental science: A report from the Subcommittee on Research, Committee on Fundamental Science. Washington, DC: National Standards and Technology Council [http://www.nsf.gov/statistics/ostp/assess/nstcafsk.htm#Topic%207; last accessed 18 February 2008].

National Institute for Standards and Technology (NIST). (2003, 15 January). Outputs and outcomes of NIST laboratory research. Retrieved 12 July 2009, from http://www.nist.gov/director/planning/studies.htm#measures.

Pennella, C. R. (1997). Managing the metrology system. Milwaukee, WI: ASQ Quality Press.\

Salzberger, T. (2009). Measurement in marketing research: An alternative framework. Northampton, MA: Edward Elgar.

Smith, R. M., Julian, E., Lunz, M., Stahl, J., Schulz, M., & Wright, B. D. (1994). Applications of conjoint measurement in admission and professional certification programs. International Journal of Educational Research, 21(6), 653-664.

Smith, E. V., Jr., & Smith, R. M. (2004). Introduction to Rasch measurement. Maple Grove, MN: JAM Press.

Spitzer, D. (2007). Transforming performance measurement: Rethinking the way we measure and drive organizational success. New York: AMACOM.

Swann, G. M. P. (2005, 2 December). John Barber’s pioneering work on the economics of measurement standards [Electronic version]. Retrieved http://www.cric.ac.uk/cric/events/jbarber/swann.pdf from Notes for Workshop in Honor of John Barber held at University of Manchester.

Wernimont, G. (1978, December). Careful intralaboratory study must come first. ASTM Standardization News, 6, 11-12.

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Womack, J. P., & Jones, D. T. (1996, Sept./Oct.). Beyond Toyota: How to root out waste and pursue perfection. Harvard Business Review, 74, 140-58.

Wright, B. D. (1999). Fundamental measurement for psychology. In S. E. Embretson & S. L. Hershberger (Eds.), The new rules of measurement: What every educator and psychologist should know (pp. 65-104 [http://www.rasch.org/memo64.htm]). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.