Posts Tagged ‘commerce’

A Yet Simpler Take on Making Sustainability Self-Sustaining

September 1, 2018

The point of focusing on sustainability is to balance human interests with a long term view of life on earth. Depleting resources as though they will be always available plainly is no way to plan for a safe and pleasant future. But it seems to me something is missing in the way we approach sustainability. Every time I see any efforts aimed at rebalancing resource usage with a long term view of the Earth’s capacity to support us, what do I see? I see solutions that cost a lot, and people saying that the costs are the price we have to pay for the mistakes that have been made, and for a viable future. And so I also see a lot of procrastination, delays, and reluctance to commit to sustainable policies and practices.

Why? Because, first, there are a great many people who cannot afford to live in the world as it is, right now, simply bearing their existing day-to-day costs. Even in the richest countries, huge proportions of people live hand to mouth, or very nearly so. Second, it’s hard to detect and punish freeloaders. Many people, companies, and governments are willing to hold off committing to sustainability in the hope that some technological fix will come along and spare them avoidable costs.

So, my question is, and I do not say this at all in jest or with any sense of irony or sarcasm: how do we make sustainability fun and profitable? How can we make sustainability economically self-sustaining? How can we make sustainability into a growth industry?

My answer to those questions is, by improving the quality of information on sustainability impacts. What does that mean? Why should that have anything to do with making sustainability fun and profitable? What improving the quality of information on sustainability impacts means is measuring it well, using methods and models that have been used in research and practice for more than 90 years. What we need is a Human, Social, and Natural Capital Metric System. or an International System of Units for Human, Social, and Natural Capital.

As we all know from the existing SI (metric system) units, high quality information makes it much easier to communicate value. Easier communication means lower transaction costs, and lower transaction costs mean that it becomes very inexpensive to find out how much of a sustainability impact is available, and what quality it is. High quality information enables grassroots bottom up efforts coordinating the decisions and behaviors of everyone everywhere. Managers would be able to dramatically improve quality in domains of human, social, and environmental value the way they do now for manufactured value. And investors would be able to reward innovation in those areas in ways they currently cannot.

For instance, with high quality sustainability impact measures, you’d be able to buy shares of stock in a new global carbon reduction effort that realistically projects it is on track to reverse climate change back its 1980 status. If someone came out with a better carbon reduction product that would make it possible to get the job done faster or at lower cost, we would have the information we need to quickly shift the flow of resources to the better product.

Speaking to other components of the UN’s Sustainability Development Goals, maybe people need to wonder why they cannot go buy 250 units of additional literacy right now? Why can’t you get a good price on a specific amount of literacy gain for your ten-year-old child from a few minutes of competitive shopping? And while you’re at it, maybe you could catch a special sale on 470 units of improved physical functionality for your great aunt who just had a hip replacement. Oh, she doesn’t need it because she’s got herself listed in a health capital investment bond likely to pay a 6% return? Well, maybe you should sink some funds into one of those contracts!

To take up the SDG 16.1 issue, if efforts to reduce armed violence were measured with the same level of information quality as kilowatt hours, that form of social capital product would be available in market transactions just the same way manufactured capital products like electricity are now. Conversely, your personal efforts at reducing armed violence, or improving someone’s literacy, or helping your great aunt with gains in physical functionality—all of these are investments of your skills and abilities that will pay back cash value to you. And because having fun with the kids, and getting out for recreational activities, are healthful things to do, enjoyment also should pay dividends.

Maybe this focus on fun and profit in making sustainability economically self-sustaining might finally find some traction for efforts in this area. Sustainability commerce could be a way of talking about these issues that will speak to matters more directly and practically. We’ll see how that works out as I try it on people in the near future.

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

 

Advertisements

Self-Sustaining Sustainability, Once Again, Already

August 12, 2018

The urgent need for massive global implementations of sustainability policies and practices oddly and counterproductively has not yet led to systematic investments in state of the art sustainability metric standards. My personal mission is to contribute to meeting this need. Longstanding, proven resources in the art and science of precision instrumentation calibration and explanatory theory are available to address these problems. In the same way technical standards for measuring length, mass, volume, time, energy, light, etc. enable the coordination of science and commerce for manufactured capital and property, so, too, will a new class of standards for measuring human, social, and natural capital.

This new art and science contradicts common assumptions in three ways. First, contrary to popular opinion that measuring these things is impossible, over 90 years of research and practice support a growing consensus among weights and measures standards engineers (metrologists) and social and psychological measurement experts that relevant unit standards are viable, feasible, and desirable.

Common perceptions are contradicted in a second way in that measurement of this kind does not require reducing human individuality to homogenized uniform sameness. Instead of a mechanical metaphor of cogs in a machine, the relevant perspective is an organic or musical one. The goal is to ensure that local uniqueness and creative improvisations are freely expressed in a context informed by shared standards (like DNA, or a musical instrument tuning system).

The third way in which much of what we think we know is mistaken concerns how to motivate adoption of sustainability policies and practices. Many among us are fearful that neither the general population nor its leaders in government and business care enough about sustainability to focus on implementing solutions. But finding the will to act is not the issue. The problem is how to create environments in which new sustainable forms of life multiply and proliferate of their own accord. To do this, people need means for satisfying their own interests in life, liberty, and the pursuit of happiness. The goal, therefore, is to organize knowledge infrastructures capable of informing and channeling the power of individual self-interest. The only way mass scale self-sustaining sustainable economies will ever happen is by tapping the entrepreneurial energy of the profit motive, where profit is defined not just in financial terms but in the quality of life and health terms of authentic wealth and genuine productivity.

We manage what we measure. If we are to collectively, fluidly, efficiently, and innovatively manage the living value of our human, social, and natural capital, we need, first, high quality information expressed in shared languages communicating that value. Second, we need, to begin with, new scientific, legal, economic, financial, and governmental institutions establishing individual rights to ownership of that value, metric units expressing amounts of that value, conformity audits for ascertaining the accuracy and precision of those units, financial alignments of the real value measured with bankable dollar amounts, and investment markets to support entrepreneurial innovations in creating that value.

The end result of these efforts will be a capacity for all of humanity to pull together in common cause to create a sustainable future. We will each be able to maximize our own personal potential at the same time we contribute to the greater good. We will not only be able to fulfill the potential of our species as stewards of the earth, we will have fun doing it! For technical information resources, see below. PDFs are available on request, and can often be found freely available online.

Self-Sustaining Sustainability

Relevant Information Resources

William P. Fisher, Jr., Ph.D.

Barney, M., & Fisher, W. P., Jr. (2016). Adaptive measurement and assessment. Annual Review of Organizational Psychology and Organizational Behavior, 3, 469-490.

Fisher, W. P., Jr. (1997). Physical disability construct convergence across instruments: Towards a universal metric. Journal of Outcome Measurement, 1(2), 87-113.

Fisher, W. P., Jr. (1999). Foundations for health status metrology: The stability of MOS SF-36 PF-10 calibrations across samples. Journal of the Louisiana State Medical Society, 151(11), 566-578.

Fisher, W. P., Jr. (2000). Objectivity in psychosocial measurement: What, why, how. Journal of Outcome Measurement, 4(2), 527-563.

Fisher, W. P., Jr. (2002). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2003). The mathematical metaphysics of measurement and metrology: Towards meaningful quantification in the human sciences. In A. Morales (Ed.), Renascent pragmatism: Studies in law and social science (pp. 118-153). Brookfield, VT: Ashgate Publishing Co.

Fisher, W. P., Jr. (2004). Meaning and method in the social sciences. Human Studies: A Journal for Philosophy & Social Sciences, 27(4), 429-454.

Fisher, W. P., Jr. (2007). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-1093 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2009, November 19). Draft legislation on development and adoption of an intangible assets metric system. Living Capital Metrics blog: https://livingcapitalmetrics.wordpress.com/2009/11/19/draft-legislation/.

Fisher, W. P., Jr. (2009). Invariance and traceability for measures of human, social, and natural capital. Measurement, 42(9), 1278-1287.

Fisher, W. P., Jr. (2009). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010, 22 November). Meaningfulness, measurement, value seeking, and the corporate objective function: An introduction to new possibilities. LivingCapitalMetrics.com, Sausalito, California.

Fisher, W. P., Jr. (2010). Measurement, reduced transaction costs, and the ethics of efficient markets for human, social, and natural capital. Bridge to Business Postdoctoral Certification, Freeman School of Business, Tulane University (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340674).

Fisher, W. P., Jr. (2010). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics Conference Series, 238(1), 012016.

Fisher, W. P., Jr. (2011). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012). What the world needs now: A bold plan for new standards [Third place, 2011 NIST/SES World Standards Day paper competition]. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr. (2015). A probabilistic model of the law of supply and demand. Rasch Measurement Transactions, 29(1), 1508-1511 [http://www.rasch.org/rmt/rmt291.pdf].

Fisher, W. P., Jr. (2015). Rasch measurement as a basis for metrologically traceable standards. Rasch Measurement Transactions, 28(4), 1492-1493 [http://www.rasch.org/rmt/rmt284.pdf].

Fisher, W. P., Jr. (2015). Rasch metrology: How to expand measurement locally everywhere. Rasch Measurement Transactions, 29(2), 1521-1523.

Fisher, W. P., Jr. (2017, September). Metrology, psychometrics, and new horizons for innovation. 18th International Congress of Metrology, Paris, 10.1051/metrology/201709007.

Fisher, W. P., Jr. (2017). A practical approach to modeling complex adaptive flows in psychology and social science. Procedia Computer Science, 114, 165-174.

Fisher, W. P., Jr. (2018). How beauty teaches us to understand meaning. Educational Philosophy and Theory, in review.

Fisher, W. P., Jr. (2018). Separation theorems in econometrics and psychometrics: Rasch, Frisch, two Fishers, and implications for measurement. Scandinavian Economic History Review, in review.

Fisher, W. P., Jr., Harvey, R. F., & Kilgore, K. M. (1995). New developments in functional assessment: Probabilistic models for gold standards. NeuroRehabilitation, 5(1), 3-25.

Fisher, W. P., Jr., Harvey, R. F., Taylor, P., Kilgore, K. M., & Kelly, C. K. (1995). Rehabits: A common language of functional assessment. Archives of Physical Medicine and Rehabilitation, 76(2), 113-122.

Fisher, W. P., Jr., & Stenner, A. J. (2011, January). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series).National Science Foundation: http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36.

Fisher, W. P., Jr., & Stenner, A. J. (2011, August 31 to September 2). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium, http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf, Jena, Germany.

Fisher, W. P., Jr., & Stenner, A. J. (2016). Theory-based metrological traceability in education: A reading measurement network. Measurement, 92, 489-496.

Fisher, W. P., Jr., & Wilson, M. (2015). Building a productive trading zone in educational assessment research and practice. Pensamiento Educativo: Revista de Investigacion Educacional Latinoamericana, 52(2), 55-78.

Pendrill, L., & Fisher, W. P., Jr. (2013). Quantifying human response: Linking metrological and psychometric characterisations of man as a measurement instrument. Journal of Physics Conference Series, 459, 012057.

Pendrill, L., & Fisher, W. P., Jr. (2015). Counting and quantification: Comparing psychometric and metrological perspectives on visual perceptions of number. Measurement, 71, 46-55.

 

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

The New Information Platform No One Sees Coming

December 6, 2012

I’d like to draw your attention to a fundamentally important area of disruptive innovations no one seems to see coming. The biggest thing rising in the world of science today that does not appear to be on anyone’s radar is measurement. Transformative potential beyond that of the Internet itself is available.

Realizing that potential will require an Intangible Assets Metric System. This system will connect together all the different ways any one thing is measured, bringing common languages for representing human, social, and economic value into play everywhere. We need these metrics on the front lines of education, health care, social services, and in human, reputation, and natural resource management, as well as in the economic models and financial spreadsheets informing policy, and in the scientific research conducted in dozens of fields.

All reading ability measures, for instance, should be transparently, inexpensively, and effortlessly expressed in a universally uniform metric, in the same way that standardized measures of weight and volume inform grocery store purchasing decisions. We have made starts at such systems for reading, writing, and math ability measures, and for health status, functionality, and chronic disease management measures. There oddly seems to be, however, little awareness of the full value that stands to be gained from uniform metrics in these areas, despite the overwhelming human, economic, and scientific value derived from standardized units in the existing economy. There has accordingly been virtually no leadership or investment in this area.

Measurement practice in business is woefully out of touch with the true paradigm shift that has been underway in psychometrics for years, even though the mantra “you manage what you measure” is repeated far and wide. In a fascinating twist, practically the only ones who notice the business world’s conceptual shortfall in measurement practice are the contrarians who observe that quantification can often be more of a distraction from management than the medium of its execution—but this is true only when measures are poorly conceived, designed, and implemented.

Demand for better measurement—measurement that reduces data volume not only with no loss of information but with the addition of otherwise unavailable interstitial information; that supports mass customized comparability for informed purchasing and quality improvement decisions; and that enables common product definitions for outcomes-based budgeting—is growing hand in hand with the spread of resilient, nimble, lean, and adaptive business models, and with the ongoing geometrical growth in data volume.

An even bigger source of demand for the features of advanced measurement is the increasing dependence of the economy on intangible assets, those forms of human, social, and natural capital that comprise 90% or more of the total capital under management. We will bring these now economically dead forms of capital to life by systematically standardizing representations of their quality and quantity. The Internet is the planetary nervous system through which basic information travels, and the Intangible Assets Metric System will be the global cerebrum, where higher order thinking takes place.

It will not be possible to realize the full potential of lean thinking in the information- and service-based economy without an Intangible Assets Metric System. Given the long-proven business value of standards and the role of measurement in management, it seems self-evident that our ongoing economic difficulties stem largely from our failure to develop and deploy an Intangible Assets Metric System providing common currencies for the exchange of authentic wealth. The future of sustainable and socially responsible business practices must surely depend extensively on universal access to flexible and practical uniform metrics for intangible assets.

Of course, for global intangible assets standards to be viable, they must be adaptable to local business demands and conditions without compromising their comparability. And that is just what is most powerfully disruptive about contemporary measurement methods: they make mass customization a reality. They’ve been doing so in computerized testing since the 1970s. Isn’t it time we started putting this technology to systematic use in a wide range of applications, from human and environmental resource management to education, health care, and social services?

Measuring/Managing Social Value

August 28, 2012

From my December 1, 2008 personal journal, written not long after the October 2008 SoCap conference. I’ve updated a few things that have changed in the intervening years.

Over the last month, I’ve been digesting what I learned at the Social Capital Markets conference at Fort Mason in San Francisco, and at the conference I attended just afterward, Bioneers, in Marin county. Bioneers (www.Bioneers.org) could be called Natural Capital Markets. It was quite like the Social Capital Markets conference with only a slight shift in emphasis, and lots of discussion of social value.

The main thing that impressed me at both of these conferences, apart from what I already knew about the caring passion I share with so many, is the huge contrast between that passion and the quality of the data that so many are basing major decisions on. Seeing this made me step back and think harder about how to shape my message.

First, though it may not seem like it initially, there is incredible practical value to be gained from taking the trouble to construct good measures. We do indeed manage what we measure. So whatever we measure becomes what we manage. If we’re not measuring anything that has anything to do with our mission, vision, or values, then what we’re managing won’t have anything to do with those, either. And when the numbers we use as measures do not actually represent a constant unit amount that adds up the way the numbers do, then we don’t have a clue what we’re measuring and we could be managing just about anything.

This is not the way to proceed. First take-away: ask for more from your data. Don’t let it mislead you with superficial appearances. Dig deeper.

Second, to put it a little differently, percentages, scores, and counts per capita, etc. are not measures that have the same meaning or quality that measures of height, weight, time, temperature, or volts have. However, for over 50 years, we have been constructing measures mathematically equivalent to physical measures from ability tests, surveys, assessments, checklists, etc. The technical literature on this is widely available. The methods have been mainstream at ETS, ACT, state and national departments of education globally, etc for decades.

Second take-away: did I say you should ask for more from your data? You can get it. A lot of people already are, though I don’t think they’re asking for nearly as much as they could get.

Third, though the massive numbers of percentages, scores, and counts per capita are not the measures we seek, they are indeed exactly the right place to start. I have seen over and over again, in education, health care, sociology, human resource management, and most recently in the UN Millennium Development Goals data, that people do know exactly what data will form a proper basis for the measurement systems they need.

Third take-away: (one more time!) ask for more from your data. It may conceal a wealth beyond what you ever guessed.

So what are we talking about? There are methods for creating measures that give you numbers that verifiably stand for a substantive unit amount that adds up in the same way one-inch blocks do (probabilistically, and within a range of error). If the instrument is properly calibrated and administered, the unit size and meaning will not change across individuals or samples measured. You can reduce data volume dramatically, not only with no loss of information but also with false appearances of information either indicated as error or flagged for further attention. You can calibrate a continuum of less to more that is reliably and reproducibly associated with, annotated by, and interpreted through your own indicators. You can equate different collections of indicators that measure the same thing so that they do so in the same unit.

Different agencies using the same, different, or mixed collections of indicators in different countries or regions could assess their measures for comparability, and if they are of satisfactory quality, equate them so they measure in the same unit. That is, well-designed instruments written and administered in different languages routinely have their items calibrate in the same order and positions, giving the same meaning to the same unit of measurement. For instance, see the recent issue of the Journal of Applied Measurement ([link]) devoted to reports on the OECD’s Programme for International Student Assessment.

This is not a data analysis strategy. It is an instrument calibration strategy. Once calibrated, the instrument can be deployed. We need to monitor its structure, but the point is to create a tool people can take out into the world and use like a thermometer or clock.

I’ve just been looking at the Charity Navigator (for instance, [link]) and the UN’s Millenium Development Goals ([link]), and the databases that have been assembled as measures of progress toward these goals ([link]). I would suppose these web sites show data in forms that people are generally familiar with, so I’m working up analyses to use as teaching tools from the UN data.

You don’t have to take any of this at my word. It’s been documented ad nauseum in the academic literature for decades. Those interested can find out more than they ever wanted to know at http://www.Rasch.org, in the Wikipedia Rasch entry, in the articles and books at JAMPress.com, or in dozens of academic journals and hundreds of books. Though I’ve done my share of it, I’m less interested in continuing to add to that than I am in making a tangible contribution to improving people’s lives.

Sorry to go on like this. I meant to keep this short. Anyway, there it is.

PS, for real geeks: For those of you serious about learning about measurement as it is rigorously and mathematically defined, look into taking Everett Smith’s measurement course at Statistics.com ([link]) or David Andrich’s academic units at the University of Western Australia ([link]). Available software includes Mike Linacre’s Winsteps, Andrich’s RUMM, and Mark Wilson’s, at UC Berkeley, Conquest.

The methods Ev, Mike, David, and Mark teach have repeatedly been proven, both in mathematical theory and in real life, to be both necessary and sufficient in the construction of meaningful, practical measurement. Any number of ways of defining objectivity in measurement have been shown to reduce to the mathematical models they use. Why all the Chicago stuff? Because of Ben Wright. I’m helping (again) to organize a conference in his honor, to be held in Chicago next March. His work won him a Career Achievement Award from the Association of Test Publishers, and the coming conference will celebrate his foundational contributions to computerized measurement in health care.

As a final note, for those of you fearing reductionistic meaninglessness, look into my philosophical work.  But enough…

Review of “Advancing Social Impact Investments Through Measurement”

August 24, 2012

Over the last few days, I have been reading several of the most recent issues of the Community Development Investment Review, especially volume 7, number 2, edited by David Erickson of the Federal Reserve Bank of San Francisco, reporting the proceedings of the March 21, 2011 conference in Washington, DC on advancing social impact investments through measurement. I am so excited to see this work that I am (truly) fairly trembling with excitement. I feel as though I’ve finally made my way home. There are so many points of contact, it’s hard to know where to start. After several days of concentrated deep breathing and close study of the CDIR, it’s now possible to formulate some coherent thoughts to share.

The CDIR papers start to sort out the complex issues involved in clarifying how measurement might contribute to the integration of impact investing and community development finance. I am heartened by the statement that “The goal of the Review is to bridge the gap between theory and practice and to enlist as many viewpoints as possible—government, nonprofits, financial institutions, and beneficiaries.” On the other hand, the omission of measurement scientists from that list of viewpoints adds another question to my long list of questions as to why measurement science is so routinely ignored by the very people who proclaim its importance. The situation is quite analogous to demanding more frequent conversational interactions from colleagues while ignoring the invention of the telephone and not providing them with the tools and network connections.

The aims shared by the CDIR contributors and myself are evident in the fact that David Erickson opens his summary of the March 21, 2011 conference with the same quote from Robert Kennedy that I placed at the end of my 2009 article in Measurement (see references below; all papers referenced are available by request if they are not already online). In that 2009 paper, in others I’ve published over the last several years, in presentations I’ve made to my measurement colleagues abroad and at home, and in various entries in my blog, I take up virtually all of the major themes that arose in the DC conference: how better measurement can attract capital to needed areas, how the cost of measurement repels many investors, how government can help by means of standard setting and regulation, how diverse and ambiguous investor and stakeholder interests can be reconciled and/or clarified, etc.

The difference, of course, is that I present these issues from the technical perspective of measurement and cannot speak authoritatively or specifically from the perspectives represented by the community development finance and impact investing fields. The bottom line take-away message for these fields from my perspective is this: unexamined assumptions may unnecessarily restrict assessments of problems and their potential solutions. As Salamon put it in his remarks in the CDIR proceedings from the Washington meeting (p. 43), “uncoordinated innovation not guided by a clear strategic concept can do more than lose its way: it can do actual harm.”

A clear strategic concept capable of coordinating innovations in social impact measurement is readily available. Multiple, highly valuable, and eminently practical measurement technologies have proven themselves in real world applications over the last 50 years. These technologies are well documented in the educational, psychological, sociological, and health care research literatures, as well as in the practical experience of high stakes testing for professional licensure and certification, for graduation, and for admissions.

Numerous reports show how to approach problems of quantification and standards with new degrees of rigor, transparency, meaningfulness, and flexibility. When measurement problems are not defined in terms of these technologies, solutions that may offer highly advantageous features are not considered. When the area of application is as far reaching and fundamental as social impact measurement, not taking new technologies into account is nothing short of tragic. I describe some of the new opportunities for you in a Technical Postscript, below.

In his Foreword to the CDIR proceedings issue, John Moon mentions having been at the 2009 SoCap event bringing together stakeholders from across the various social capital markets arenas. I was at the 2008 SoCap, and I came away from it with much the same impression as Moon, feeling that the palpable excitement in the air was more than tempered by the evident fact that people were often speaking at cross purposes, and that there did not seem to be a common object to the conversation. Moon, Erickson, and their colleagues have been in one position to sort out the issues involved, and I have been in another, but we are plainly on converging courses.

Though the science is in place and has been for decades, it will not and cannot amount to anything until the people who can best make use of it do so. The community development finance and impact investing fields are those people. Anyone interested in getting together for an informal conversation on topics of mutual interest should feel free to contact me.

Technical Postscript

There are at least six areas in efforts to advance social impact investments via measurement that will be most affected by contemporary methods. The first has to do with scale quality. I won’t go into the technical details, but numbers do not automatically stand for something that adds up the way they do. Mapping a substantive construct onto a number line requires specific technical expertise; there is no evidence of that expertise in any of the literature I’ve seen on social impact investing, or on measuring intangible assets. This is not an arbitrary bit of philosophical esoterica or technical nicety. This is one of those areas where the practical value of scientific rigor and precision comes into its own. It makes all the difference in being able to realize goals for measurement, investment, and redefining profit in terms of social impacts.

A second area in which thinking on social impact measurement will be profoundly altered by current scaling methods concerns the capacity to reduce data volume with no loss of information. In current systems, each indicator has its own separate metric. Data volume quickly multiplies when tracking separate organizations for each of several time periods in various locales. Given sufficient adherence to data quality and meaningfulness requirements, today’s scaling methods allow these indicators to be combined into a single composite measure—from which each individual observation can be inferred.

Elaborating this second point a bit further, I noted that some speakers at the 2011 conference in Washington thought reducing data volume is a matter of limiting the number of indicators that are tracked. This strategy is self-defeating, however, as having fewer independent observations increases uncertainty and risk. It would be far better to set up systems in which the metrics are designed so as to incorporate the amount of uncertainty that can be tolerated in any given decision support application.

The third area I have in mind deals with the diverse spectrum of varying interests and preferences brought to the table by investors, beneficiaries, and other stakeholders. Contemporary approaches in measurement make it possible to adapt the content of the particular indicators (counts or frequencies of events, or responses to survey questions or test items) to the needs of the user, without compromising the comparability of the resulting quantitative measure. This feature makes it possible to mass customize the content of the metrics employed depending on the substantive nature of the needs at that time and place.

Fourth, it is well known that different people judging performances or assigning numbers to observations bring different personal standards to bear as they make their ratings. Contemporary measurement methods enable the evaluation and scaling of raters and judges relative to one another, when data are gathered in a manner facilitating such comparisons. The end result is a basis for fair comparisons, instead of scores that vary depending more on which rater is observing than on the quality of the performance.

Fifth, much of the discussion at the conference in Washington last year emphasized the need for shared data formatting and reporting standards. As might be guessed from the prior four areas I’ve described, significant advances have occurred in standard setting methods. It is suggested in the CDIR proceedings that the Treasury Department should be the home to a new institute for social impact measurement standards. In a series of publications over the last few years, I have suggested a need for an Intangible Assets Metric System to NIST and NSF (see below for references and links; all papers are available on request). That suggestion comes up again in my third-prize winning entry in the 2011 World Standards Day paper competition, sponsored by NIST and SES (the Society for Standards Professionals), entitled “What the World Needs Now: A Bold Plan for New Standards.” (See below for link.)

Sixth, as noted by Salamon (p. 43), “metrics are not neutral. They not only measure impact, they can also shape it.” Though this is not likely exactly what Salamon meant, one of the most exciting areas in measurement applications in education in recent years, one led in many ways by my colleague, Mark Wilson, and his group at UC Berkeley, concerns exactly this feedback loop between measurement and impact. In education, it has become apparent that test scaling reveals the order in which lessons are learned. Difficult problems that require mastery of easier problems are necessarily answered correctly less often than the easier problems. When the difficulty order of test questions in a given subject remains constant over time and across thousands of students, one may infer that the scale reveals the path of least resistance. Individualizing instruction by targeting lessons at the student’s measure has given rise to a concept of formative assessment, distinct from the summative assessment of accountability applications. I suspect this kind of a distinction may also prove of value in social impact applications.

Relevant Publications and Presentations

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [http://www.rasch.org/rmt/rmt154j.htm].

Fisher, W. P., Jr. (2004, Thursday, January 22). Bringing capital to life via measurement: A contribution to the new economics. In  R. Smith (Chair), Session 3.3B. Rasch Models in Economics and Marketing. Second International Conference on Measurement in Health, Education, Psychology, and Marketing: Developments with Rasch Models, The International Laboratory for Measurement in the Social Sciences, School of Education, Murdoch University, Perth, Western Australia.

Fisher, W. P., Jr. (2005, August 1-3). Data standards for living human, social, and natural capital. In Session G: Concluding Discussion, Future Plans, Policy, etc. Conference on Entrepreneurship and Human Rights [http://www.fordham.edu/economics/vinod/ehr05.htm], Pope Auditorium, Lowenstein Bldg, Fordham University.

Fisher, W. P., Jr. (2007, Summer). Living capital metrics. Rasch Measurement Transactions, 21(1), 1092-3 [http://www.rasch.org/rmt/rmt211.pdf].

Fisher, W. P., Jr. (2008, 3-5 September). New metrological horizons: Invariant reference standards for instruments measuring human, social, and natural capital. Presented at the 12th International Measurement Confederation (IMEKO) TC1-TC7 Joint Symposium on Man, Science, and Measurement, Annecy, France: University of Savoie.

Fisher, W. P., Jr. (2009, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Fisher, W. P.. Jr. (2009). NIST Critical national need idea White Paper: Metrological infrastructure for human, social, and natural capital (Tech. Rep., http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology.

Fisher, W. P., Jr. (2010). The standard model in the history of the natural sciences, econometrics, and the social sciences. Journal of Physics: Conference Series, 238(1), http://iopscience.iop.org/1742-6596/238/1/012016/pdf/1742-6596_238_1_012016.pdf.

Fisher, W. P., Jr. (2011). Bringing human, social, and natural capital to life: Practical consequences and opportunities. In N. Brown, B. Duckor, K. Draney & M. Wilson (Eds.), Advances in Rasch Measurement, Vol. 2 (pp. 1-27). Maple Grove, MN: JAM Press.

Fisher, W. P., Jr. (2011). Measuring genuine progress by scaling economic indicators to think global & act local: An example from the UN Millennium Development Goals project. LivingCapitalMetrics.com. Retrieved 18 January 2011, from Social Science Research Network: http://ssrn.com/abstract=1739386.

Fisher, W. P., Jr. (2012). Measure and manage: Intangible assets metric standards for sustainability. In J. Marques, S. Dhiman & S. Holt (Eds.), Business administration education: Changes in management and leadership strategies (pp. 43-63). New York: Palgrave Macmillan.

Fisher, W. P., Jr. (2012, May/June). What the world needs now: A bold plan for new standards. Standards Engineering, 64(3), 1 & 3-5 [http://ssrn.com/abstract=2083975].

Fisher, W. P., Jr., & Stenner, A. J. (2011, January). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series). Retrieved 25 October 2011, from National Science Foundation: http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36.

Fisher, W. P., Jr., & Stenner, A. J. (2011, August 31 to September 2). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO) TC1-TC7-TC13 Joint Symposium, http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-24493/ilm1-2011imeko-018.pdf, Jena, Germany.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Externalities are to markets as anomalies are to scientific laws

October 28, 2011

Economic externalities are to efficient markets as any consistent anomaly is relative to a lawful regularity. Government intervention in markets is akin to fudging the laws of physics to explain the wobble in Uranus’ orbit, or to explain why magnetized masses would not behave like wooden or stone masses in a metal catapult (Rasch’s example). Further, government intervention in markets is necessary only as long as efficient markets for externalized forms of capital are not created. The anomalous exceptions to the general rule of market efficiency have long since been shown to themselves be internally consistent lawful regularities in their own right amenable to configuration as markets for human, social and natural forms of capital.

There is an opportunity here for the concise and elegant statement of the efficient markets hypothesis, the observation of certain anomalies, the formulation of new theories concerning these forms of capital, the framing of efficient markets hypotheses concerning the behavior of these anomalies, tests of these hypotheses in terms of the inverse proportionality of two of the parameters relative to the third, proposals as to the uniform metrics by which the scientific laws will be made commercially viable expressions of capital value, etc.

We suffer from the illusion that trading activity somehow spontaneously emerges from social interactions. It’s as though comparable equivalent value is some kind of irrefutable, incontestable feature of the world to which humanity adapts its institutions. But this order of things plainly puts the cart before the horse when the emergence of markets is viewed historically. The idea of fair trade, how it is arranged, how it is recognized, when it is appropriate, etc. varies markedly across cultures and over time.

Yes, “’the price of things is in inverse ratio to the quantity offered and in direct ratio to the quantity demanded’ (Walras 1965, I, 216-17)” (Mirowski, 1988, p. 20). Yes, Pareto made “a direct extrapolation of the path-independence of equilibrium energy states in rational mechanics and thermodynamics” to “the path-independence of the realization of utility” (Mirowski, 1988, p. 21). Yes, as Ehrenfest showed, “an analogy between thermodynamics and economics” can be made, and economic concepts can be formulated “as parallels of thermodynamic concepts, with the concept of equilibrium occupying the central position in both theories” (Boumans, 2005, p. 31).  But markets are built up around these lawful regularities by skilled actors who articulate the rules, embody the roles, and initiate the relationships comprising economic, legal, and scientific institutions. “The institutions define the market, rather than the reverse” (Miller & O’Leary, 2007, p. 710). What we need are new institutions built up around the lawful regularities revealed by Rasch models. The problem is how to articulate the rules, embody the roles, and initiate the relationships.

Noyes (1936, pp. 2, 13; quoted in De Soto 2000, p. 158) provides some useful pointers:

“The chips in the economic game today are not so much the physical goods and actual services that are almost exclusively considered in economic text books, as they are that elaboration of legal relations which we call property…. One is led, by studying its development, to conceive the social reality as a web of intangible bonds–a cobweb of invisible filaments–which surround and engage the individual and which thereby organize society…. And the process of coming to grips with the actual world we live in is the process of objectivizing these relations.”

 Noyes (1936, p. 20, quoted in De Soto 2000, p. 163) continues:

“Human nature demands regularity and certainty and this demand requires that these primitive judgments be consistent and thus be permitted to crystallize into certain rules–into ‘this body of dogma or systematized prediction which we call law.’ … The practical convenience of the public … leads to the recurrent efforts to systematize the body of laws. The demand for codification is a demand of the people to be released from the mystery and uncertainty of unwritten or even of case law.” [This is quite an apt statement of the largely unstated demands of the Occupy Wall Street movement.]

  De Soto (2000, p. 158) explains:

 “Lifting the bell jar [integrating legal and extralegal property rights], then, is principally a legal challenge. The official legal order must interact with extralegal arrangements outside the bell jar to create a social contract on property and capital. To achieve this integration, many other disciplines are of course necessary … [economists, urban planners, agronomists, mappers, surveyers, IT specialists, etc]. But ultimately, an integrated national social contract will be concretized only in laws.”

  “Implementing major legal change is a political responsibility. There are various reasons for this. First, law is generally concerned with protecting property rights. However, the real task in developing and former communist countries is not so much to perfect existing rights as to give everyone a right to property rights–‘meta-rights,’ if you will. [Paraphrasing, the real task in the undeveloped domains of human, social, and natural capital is not so much the perfection of existing rights as it is to harness scientific measurement in the name of economic justice and grant everyone legal title to their shares of their ownmost personal properties, their abilities, health, motivations, and trustworthiness, along with their shares of the common stock of social and natural resources.] Bestowing such meta-rights, emancipating people from bad law, is a political job. Second, very small but powerful vested interests–mostly repre- [p. 159] sented by the countries best commercial lawyers–are likely to oppose change unless they are convinced otherwise. Bringing well-connected and moneyed people onto the bandwagon requires not consultants committed to serving their clients but talented politicians committed to serving their people. Third, creating an integrated system is not about drafting laws and regulations that look good on paper but rather about designing norms that are rooted in people’s beliefs and are thus more likely to be obeyed and enforced. Being in touch with real people is a politician’s task. Fourth, prodding underground economies to become legal is a major political sales job.”

 De Soto continues (p. 159), intending to refer only to real estate but actually speaking of the need for formal legal title to personal property of all kinds, which ought to include human, social, and natural capital:

  “Without succeeding on these legal and political fronts, no nation can overcome the legal apartheid between those who can create capital and those who cannot. Without formal property, no matter how many assets they accumulate or how hard they work, most people will not be able to prosper in a capitalist society. They will continue to remain beyond the radar of policymakers, out of the reach of official records, and thus economically invisible.”

Boumans, M. (2005). How economists model the world into numbers. New York: Routledge.

De Soto, H. (2000). The mystery of capital: Why capitalism triumphs in the West and fails everywhere else. New York: Basic Books.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-34.

Mirowski, P. (1988). Against mechanism: Protecting economics from science. Lanham, MD: Rowman & Littlefield.

Noyes, C. R. (1936). The institution of property. New York: Longman’s Green.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Rasch Measurement as a Basis for a New Standards Framework

October 26, 2011

The 2011 U.S. celebration of World Standards Day took place on October 13 at the Fairmont Hotel in Washington, D.C., with the theme of “Advancing Safety and Sustainability Standards Worldwide.” The evening began with a reception in a hall of exhibits from the celebrations sponsors, which included the National Institute for Standards and Technology (NIST), the Society for Standards Professionals (SES), the American National Standards Institute (ANSI), Microsoft, IEEE, Underwriters Laboratories, the Consumer Electronics Association, ASME, ASTM International, Qualcomm, Techstreet, and many others. Several speakers took the podium after dinner to welcome the 400 or so attendees and to present the World Standards Day Paper Competition Awards and the Ronald H. Brown Standards Leadership Award.

Dr. Patrick Gallagher, Under Secretary of Commerce for Standards and Technology, and Director of NIST, was the first speaker after dinner. He directed his remarks at the value of a decentralized, voluntary, and demand-driven system of standards in promoting innovation and economic prosperity. Gallagher emphasized that “standards provide the common language that keeps domestic and international trade flowing,” concluding that “it is difficult to overestimate their critical value to both the U.S. and global economy.”

James Shannon, President of the National Fire Protection Association (NFPA), accepted the R. H. Brown Standards Leadership Award in recognition for his work initiating or improving the National Electrical Code, the Life Safety Code, and the Fire Safe Cigarette and Residential Sprinkler Campaigns.

Ellen Emard, President of SES, introduced the paper competition award winners. As of this writing the titles and authors of the first and second place awards are not yet available on the SES web site (http://www.ses-standards.org/displaycommon.cfm?an=1&subarticlenbr=56). I took third place for my paper, “What the World Needs Now: A Bold Plan for New Standards.” Where the other winning papers took up traditional engineering issues concerning the role of standards in advancing safety and sustainability issues, my paper spoke to the potential scientific and economic benefits that could be realized by standard metrics and common product definitions for outcomes in education, health care, social services, and environmental resource management. All three of the award-winning papers will appear in a forthcoming issue of Standards Engineering, the journal of SES.

I was coincidentally seated at the dinner alongside Gordon Gillerman, winner of third place in the 2004 paper competition (http://www.ses-standards.org/associations/3698/files/WSD%202004%20-%203%20-%20Gillerman.pdf) and currently Chief of the Standards Services Division at NIST. Gillerman has a broad range of experience in coordinating standards across multiple domains, including environmental protection, homeland security, safety, and health care. Having recently been involved in a workshop focused on measuring, evaluating, and improving the usability of electronic health records (http://www.nist.gov/healthcare/usability/upload/EHR-Usability-Workshop-2011-6-03-2011_final.pdf), Gillerman was quite interested in the potential Rasch measurement techniques hold for reducing data volume with no loss of information, and so for streamlining computer interfaces.

Robert Massof of Johns Hopkins University accompanied me to the dinner, and was seated at a nearby table. Also at Massof’s table were several representatives of the National Institute of Building Sciences, some of whom Massof had recently met at a workshop on adaptations for persons with low vision disabilities. Massof’s work equating the main instruments used for assessing visual function in low vision rehabilitation could lead to a standard metric useful in improving the safety and convenience of buildings.

As is stated in educational materials distributed at the World Standards Day celebration by ANSI, standards are a constant behind-the-scenes presence in nearly all areas of everyday life. Everything from air, water, and food to buildings, clothing, automobiles, roads, and electricity are produced in conformity with voluntary consensus standards of various kinds. In the U.S. alone, more than 100,000 standards specify product and system features and interconnections, making it possible for appliances to tap the electrical grid with the same results no matter where they are plugged in, and for products of all kinds to be purchased with confidence. Life is safer and more convenient, and science and industry are more innovative and profitable, because of standards.

The point of my third-place paper is that life could be even safer and more convenient, and science and industry could be yet more innovative and profitable, if standards and conformity assessment procedures for outcomes in education, health care, social services, and environmental resource management were developed and implemented. Rasch measurement demonstrates the consistent reproducibility of meaningful measures across samples and different collections of construct-relevant items. Within any specific area of interest, then, Rasch measures have the potential of serving as the kind of mediating instruments or objects recognized as essential to the process of linking science with the economy (Fisher & Stenner, 2011b; Hussenot & Missonier, 2010; Miller & O’Leary, 2007). Recent white papers published by NIST and NSF document the challenges and benefits likely to be encountered and produced by initiatives moving in this direction (Fisher, 2009; Fisher & Stenner, 2011a).

A diverse array of Rasch measurement presentations were made at the recent International Measurement Confederation (IMEKO) meeting of metrology engineers in Jena, Germany (see RMT 25 (1), p. 1318). With that start at a new dialogue between the natural and social sciences, the NIST and NSF white papers, and with the award in the World Standards Day paper competition, the U.S. and international standards development communities have shown their interest in exploring possibilities for a new array of standard units of measurement, standardized outcome product definitions, standard conformity assessment procedures, and outcome product quality standards. The increasing acceptance and recognition of the viability of such standards is a logical consequence of observations like these:

  • “Where this law [relating reading ability and text difficulty to comprehension rate] can be applied it provides a principle of measurement on a ratio scale of both stimulus parameters and object parameters, the conceptual status of which is comparable to that of measuring mass and force. Thus…the reading accuracy of a child…can be measured with the same kind of objectivity as we may tell its weight” (Rasch, 1960, p. 115).
  • “Today there is no methodological reason why social science cannot become as stable, as reproducible, and hence as useful as physics” (Wright, 1997, p. 44).
  • “…when the key features of a statistical model relevant to the analysis of social science data are the same as those of the laws of physics, then those features are difficult to ignore” (Andrich, 1988, p. 22).

Rasch’s work has been wrongly assimilated in social science research practice as just another example of the “standard model” of statistical analysis. Rasch measurement rightly ought instead to be treated as a general articulation of the three-variable structure of natural law useful in framing the context of scientific practice. That is, Rasch’s models ought to be employed primarily in calibrating instruments quantitatively interpretable at the point of use in a mathematical language shared by a community of research and practice. To be shared in this way as a universally uniform coin of the realm, that language must be embodied in a consensus standard defining universally uniform units of comparison.

Rasch measurement offers the potential of shifting the focus of quantitative psychosocial research away from data analysis to integrated qualitative and quantitative methods enabling the definition of standard units and the calibration of instruments measuring in that unit. An intangible assets metric system will, in turn, support the emergence of new product- and performance-based standards, management system standards, and personnel certification standards. Reiterating once again Rasch’s (1960, p. xx) insight, we can acknowledge with him that “this is a huge challenge, but once the problem has been formulated it does seem possible to meet it.”

 References

Andrich, D. (1988). Rasch models for measurement. (Vols. series no. 07-068). Sage University Paper Series on Quantitative Applications in the Social Sciences. Beverly Hills, California: Sage Publications.

Fisher, W. P.. Jr. (2009). Metrological infrastructure for human, social, and natural capital (NIST Critical National Need Idea White Paper Series, Retrieved 25 October 2011 from http://www.nist.gov/tip/wp/pswp/upload/202_metrological_infrastructure_for_human_social_natural.pdf). Washington, DC: National Institute for Standards and Technology.

Fisher, W. P., Jr., & Stenner, A. J. (2011a, January). Metrology for the social, behavioral, and economic sciences (Social, Behavioral, and Economic Sciences White Paper Series). Retrieved 25 October 2011 from http://www.nsf.gov/sbe/sbe_2020/submission_detail.cfm?upld_id=36. Washington, DC: National Science Foundation.

Fisher, W. P., Jr., & Stenner, A. J. (2011b). A technology roadmap for intangible assets metrology. In Fundamentals of measurement science. International Measurement Confederation (IMEKO), Jena, Germany, August 31 to September 2.

Hussenot, A., & Missonier, S. (2010). A deeper understanding of evolution of the role of the object in organizational process. The concept of ‘mediation object.’ Journal of Organizational Change Management, 23(3), 269-286.

Miller, P., & O’Leary, T. (2007, October/November). Mediating instruments and making markets: Capital budgeting, science and the economy. Accounting, Organizations, and Society, 32(7-8), 701-34.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Wright, B. D. (1997, Winter). A history of social science measurement. Educational Measurement: Issues and Practice, 16(4), 33-45, 52 [http://www.rasch.org/memo62.htm].

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Question Authority: Queries In the Back of the Wall Street Demonstrators’ Minds

October 2, 2011

I think the Wall Street demonstrators’ lack of goals and the admission of not having a solution is very important. All solutions offered so far are band-aids at best, and most are likely to do more harm than good.

I think I have an innovative way of articulating the questions people have on their minds. I thought of scattering small pieces of paper anywhere there are these demonstrations going on, with questions like these on them:

Feeling robbed of the trust, loyalty, and commitment you invested?

Unable to get a good return on your investment in your education?

Feeling robbed of your share of the world’s natural resources?

How many shares of social capital do you own?

How many shares of literacy capital do you have on the market?

How many shares of health capital do you own?

How many shares of natural capital do you own?

Wishing there was an easy way to know what return rate you get on your health investments?

Wishing there was an easy way to know what return rate you get on your education investments?

Why don’t you have legal title to your literacy capital shares?

Why don’t you have legal title to your social capital shares?

Why don’t you have legal title to your health capital shares?

Why don’t you have legal title to your natural capital shares?

Why don’t you know how many literacy capital shares are rightfully yours?

Why don’t you know how many social capital shares are rightfully yours?

Why don’t you know how many health capital shares are rightfully yours?

Why don’t you know how many natural capital shares are rightfully yours?

Why is there no common currency for trading on your literacy capital?

Why is there no common currency for trading on your health capital?

Why is there no common currency for trading on your social capital?

Why is there no common currency for trading on your natural capital?

Why aren’t corporations accountable for their impacts on your literacy capital investments?

Why aren’t corporations accountable for their impacts on your natural capital investments?

Why aren’t corporations accountable for their impacts on your social capital investments?

Why aren’t corporations accountable for their impacts on your health capital investments?

Why aren’t governments accountable for their impacts on your literacy capital investments?

Why aren’t governments accountable for their impacts on your natural capital investments?

Why aren’t governments accountable for their impacts on your social capital investments?

Why aren’t governments accountable for their impacts on your health capital investments?

Why are educational outcomes not comparable in a common metric?

Why are health care outcomes not comparable in a common metric?

Why are social program outcomes not comparable in a common metric?

Why are natural resource management program outcomes not comparable in a common metric?

Why do accounting and economics focus on land, labor, and manufactured capital instead of putting the value of ecosystem services, and health, literacy, and social capital, on the books and in the models, along with property and manufactured capital?

If we truly do manage what we measure, why don’t we have a metric system for literacy capital?

Can we effectively manage literacy capital if we don’t have a universally recognized and accepted metric for it?

If we truly do manage what we measure, why don’t we have a metric system for health capital?

Can we effectively manage health capital if we don’t have a universally recognized and accepted metric for it?

If we truly do manage what we measure, why don’t we have a metric system for social capital?

Can we effectively manage social capital if we don’t have a universally recognized and accepted metric for it?

If we truly do manage what we measure, why don’t we have a metric system for natural capital?

Can we effectively manage natural capital if we don’t have a universally recognized and accepted metric for it?

How is our collective imagination being stifled by the lack of a common language for literacy capital?

How is our collective imagination being stifled by the lack of a common language for health capital?

How is our collective imagination being stifled by the lack of a common language for social capital?

How is our collective imagination being stifled by the lack of a common language for natural capital?

How can the voice of the people be heard without common languages for things that are important to us?

How do we know where we stand as individuals and as a society if we can’t track the value and volume of our literacy, health, social, and natural capital shares?

Why don’t NIST and NSF fund new research into literacy, health, social, and natural capital metrics?

Why aren’t banks required to offer literacy, health, social, and natural capital accounts?

If we want to harmonize relationships between people, within and between societies, and between culture and nature, why don’t we tune the instruments on which we play the music of our lives?

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Reimagining Capitalism Again, Part III: Reflections on Greider’s “Bold Ideas” in The Nation

September 10, 2011

And so, The Nation’s “Bold Ideas for a New Economy” is disappointing for not doing more to start from the beginning identified by its own writer, William Greider. The soul of capitalism needs to be celebrated and nourished, if we are to make our economy “less destructive and domineering,” and “more focused on what people really need for fulfilling lives.” The only real alternative to celebrating and nourishing the soul of capitalism is to kill it, in the manner of the Soviet Union’s failed experiments in socialism and communism.

The article speaks the truth, though, when it says there is no point in trying to persuade the powers that be to make the needed changes. Republicans see the market as it exists as a one-size-fits-all economic panacea, when all it can accomplish in its current incomplete state is the continuing externalization of anything and everything important about human, social, and environmental decency. For their part, Democrats do indeed “insist that regulation will somehow fix whatever is broken,” in an ever-expanding socialistic micromanagement of every possible exception to the rules that emerges.

To date, the president’s efforts at a nonpartisan third way amount only to vacillations between these opposing poles. The leadership that is needed, however, is something else altogether. Yes, as The Nation article says, capitalism needs to be made to serve the interests of society, and this will require deep structural change, not just new policies. But none of the contributors of the “bold ideas” presented propose deep structural changes of a kind that actually gets at the soul of capitalism. All of the suggestions are ultimately just new policies tweaking superficial aspects of the economy in mechanical, static, and very limited ways.

The article calls for “Democratizing reforms that will compel business and finance to share decision-making and distribute rewards more fairly.” It says the vision has different names but “the essence is a fundamental redistribution of power and money.” But corporate distortions of liability law, the introduction of boardroom watchdogs, and a tax on financial speculation do not by any stretch of the imagination address the root causes of social and environmental irresponsibility in business. They “sound like obscure technical fixes” because that’s what they are. The same thing goes for low-cost lending from public banks, the double or triple bottom lines of Benefit Corporations, new anti-trust laws, calls for “open information” policies, added personal stakes for big-time CEOs, employee ownership plans, the elimination of tax subsidies for, new standards for sound investing, new measures of GDP, and government guarantees of full employment.

All of these proposals sound like what ought to be the effects and outcomes of efforts addressing the root causes of capitalisms’ shortcomings. Instead, they are band aids applied to scratched fingers and arms when multiple by-pass surgery is called for. That is, what we need is to understand how to bring the spirit of capitalism to life in the new domains of human, social, and environmental interests, but what we’re getting are nothing but more of the same piecemeal ways of moving around the deck chairs on the Titanic.

There is some truth in the assertion that what really needs reinventing is our moral and spiritual imagination. As someone (Einstein or Edison?) is supposed to have put it, originality is simply a matter of having a source for an analogy no one else has considered. Ironically, the best model is often the one most taken for granted and nearest to hand. Such is the case with the two-sided scientific and economic effects of standardized units of measurement. The fundamental moral aspect here is nothing other than the Golden Rule, independently derived and offered in cultures throughout history, globally. Individualized social measurement is nothing if not a matter of determining whether others are being treated in the way you yourself would want to be treated.

And so, yes, to stress the major point of agreement with The Nation, “the new politics does not start in Washington.” Historically, at their best, governments work to keep pace with the social and technical innovations introduced by their peoples. Margaret Mead said it well a long time ago when she asserted that small groups of committed citizens are the only sources of real social change.

Not to be just one of many “advocates with bold imaginations” who wind up marginalized by the constraints of status quo politics, I claim my personal role in imagining a new economic future by tapping as deeply as I can into the positive, pre-existing structures needed for a transition into a new democratic capitalism. We learn through what we already know. Standards are well established as essential to commerce and innovation, but 90% of the capital under management in our economy—the human, social, and natural capital—lacks the standards needed for optimal market efficiency and effectiveness. An intangible assets metric system will be a vitally important way in which we extend what is right and good in the world today into new domains.

To conclude, what sets this proposal apart from those offered by The Nation and its readers hinges on our common agreement that “the most threatening challenge to capitalism is arguably the finite carrying capacity of the natural world.” The bold ideas proposed by The Nation’s readers respond to this challenge in ways that share an important feature in common: people have to understand the message and act on it. That fact dooms all of these ideas from the start. If we have to articulate and communicate a message that people then have to act on, we remain a part of the problem and not part of the solution.

As I argue in my “The Problem is the Problem” blog post of some months ago, this way of defining problems is itself the problem. That is, we can no longer think of ourselves as separate from the challenges we face. If we think we are not all implicated through and through as participants in the construction and maintenance of the problem, then we have not understood it. The bold ideas offered to date are all responses to the state of a broken system that seek to reform one or another element in the system when what we need is a whole new system.

What we need is a system that so fully embodies nature’s own ecological wisdom that the medium becomes the message. When the ground rules for economic success are put in place such that it is impossible to earn a profit without increasing stocks of human, social, and natural capital, there will be no need to spell out the details of a microregulatory structure of controlling new anti-trust laws, “open information” policies, personal stakes for big-time CEOs, employee ownership plans, the elimination of tax subsidies, etc. What we need is precisely what Greider reported from Innovest in his book: reliable, high quality information that makes human, social, and environmental issues matter financially. Situated in a context like that described by Bernstein in his 2004 The Birth of Plenty, with the relevant property rights, rule of law, scientific rationality, capital markets, and communications networks in place, it will be impossible to stop a new economic expansion of historic proportions.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Reimagining Capitalism Again, Part II: Scientific Credibility in Improving Information Quality

September 10, 2011

The previous posting here concluded with two questions provoked by a close consideration of a key passage in William Greider’s 2003 book, The Soul of Capitalism. First, how do we create the high quality, solid information markets need to punish and reward relative to ethical and sustainable human, social, and environmental values? Second, what can we learn from the way we created that kind of information for property and manufactured capital? There are good answers to these questions, answers that point in productive directions in need of wide exploration and analysis.

The short answer to both questions is that better, more scientifically rigorous measurement at the local level needs to be implemented in a context of traceability to universally uniform standards. To think global and act local simultaneously, we need an efficient and transparent way of seeing where we stand in the world relative to everyone else. Having measures expressed in comparable and meaningful units is an important part of how we think global while acting local.

So, for markets to punish and reward businesses in ways able to build human, social, and environmental value, we need to be able to price that value, to track returns on investments in it, and to own shares of it. To do that, we need a new intangible assets metric system that functions in a manner analogous to the existing metric system and other weights and measures standards. In the same way these standards guarantee high quality information on volume, weight, thermal units, and volts in grocery stores and construction sites, we need a new set of standards for human abilities, performances, and health; for social trust, commitment, and loyalty; and for the environment’s air and water processing services, fisheries, gene pools, etc.

Each industry needs an instrumentarium of tools and metrics that mediate relationships universally within its entire sphere of production and/or service. The obvious and immediate reaction to this proposal will likely be that this is impossible, that it would have been done by now if it was possible, and that anyone who proposes something like this is simply unrealistic, perhaps dangerously so. So, here we have another reason to add to those given in the June 8, 2011 issue of The Nation (http://www.thenation.com/article/161267/reimagining-capitalism-bold-ideas-new-economy) as to why bold ideas for a new economy cannot gain any traction in today’s political discourse.

So what basis in scientific authority might be found for this audacious goal of an intangible assets metric system? This blog’s postings offer multiple varieties of evidence and argument in this regard, so I’ll stick to more recent developments, namely, last week’s meeting of the International Measurement Confederation (IMEKO) in Jena, Germany. Membership in IMEKO is dominated by physicists, engineers, chemists, and clinical laboratorians who work in private industry, academia, and government weights and measures standards institutes.

Several IMEKO members past and present are involved with one or more of the seven or eight major international standards organizations responsible for maintaining and improving the metric system (the Systeme Internationale des Unites). Two initiatives undertaken by IMEKO and these standards organizations take up the matter at issue here concerning the audacious goal of standard units for human, social, and natural capital.

First, the recently released third edition of the International Vocabulary of Measurement (VIM, 2008) expands the range of the concepts and terms included to encompass measurement in the human and social sciences. This first effort was not well informed as to the nature of widely realized state of the art developments in measurement in education, health care, and the social sciences. What is important is that an invitation to further dialogue has been extended from the natural to the social sciences.

That invitation was unintentionally accepted and a second initiative advanced just as the new edition of the VIM was being released, in 2008. Members of three IMEKO technical committees (TC 1-7-13; those on Measurement Science, Metrology Education, and Health Care) cultivate a special interest in ideas on the human and social value of measurement. At their 2008 meeting in Annecy, France, I presented a paper (later published in revised form as Fisher, 2009) illustrating how, over the previous 50 years and more, the theory and practice of measurement in the social sciences had developed in ways capable of supporting convenient and useful universally uniform units for human, social, and natural capital.

The same argument was then advanced by my fellow University of Chicago alum, Nikolaus Bezruczko, at the 2009 IMEKO World Congress in Lisbon. Bezruczko and I both spoke at the 2010 TC 1-7-13 meeting in London, and last week our papers were joined by presentations from six of our colleagues at the 2011 IMEKO TC 1-7-13 meeting in Jena, Germany. Another fellow U Chicagoan, Mark Wilson, a long time professor in the Graduate School of Education at the University of California, Berkeley, gave an invited address contrasting four basic approaches to measurement in psychometrics, and emphasizing the value of methods that integrate substantive meaning with mathematical rigor.

Examples from education, health care, and business were then elucidated at this year’s meeting in Jena by myself, Bezruczko, Stefan Cano (University of Plymouth, England), Carl Granger (SUNY, Buffalo; paper presented by Bezruczko, a co-author), Thomas Salzberger (University of Vienna, Austria), Jack Stenner (MetaMetrics, Inc., Durham, NC, USA), and Gordon Cooper (University of Western Australia, Crawley, WA, Australia; paper presented by Fisher, a co-author).

The contrast between these presentations and those made by the existing IMEKO membership hinges on two primary differences in focus. The physicists and engineers take it for granted that all instrument calibration involves traceability to metrological reference standards. Dealing as they are with existing standards and physical or chemical materials that usually possess deterministically structured properties, issues of how to construct linear measures from ordinal observations never come up.

Conversely, the social scientists and psychometricians take it for granted that all instrument calibration involves evaluations of the capacity of ordinal observations to support the construction of linear measures. Dealing as they are with data from tests, surveys, and rating scale assessments, issues of how to relate a given instrument’s unit to a reference standard never come up.

Thus there is significant potential for mutually instructive dialogue between natural and social scientists in this context. Many areas of investigation in the natural sciences have benefited from the introduction of probabilistic concepts in recent decades, but there are perhaps important unexplored opportunities for the application of probabilistic measurement, as opposed to statistical, models. By taking advantage of probabilistic models’ special features, measurement in education and health care has begun to realize the benefit of broad generalizations of comparable units across grades, schools, tests, and curricula.

Though the focus of my interest here is in the capacity of better measurement to improve the efficiency of human, social, and natural capital markets, it may turn out that as many or more benefits will accrue in the natural sciences’ side of the conversation as in the social sciences’ side. The important thing for the time being is that the dialogue is started. New and irreversible mutual understandings between natural and social scientists have already been put on the record. It may happen that the introduction of a new supply of improved human, social, and natural capital metrics will help articulate the largely, as yet, unstated but nonetheless urgent demand for them.

Fisher, W. P., Jr. (2009, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement, 42(9), 1278-1287.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.