Posts Tagged ‘nature’

A Summary End-of-Year Philosophical Overview

December 25, 2009

So the end of the year and the start of a new one makes a good time to reflect a bit on just what the situation in the world looks like, philosophically speaking.

As is so often the case, we hold the keys to our own liberation, but don’t know it, can’t see them, or refuse out of pure contrariness to fit them in the locks. Here, then, is a list of locks and keys for those who might want to match them up and see new ways of doing things.

  • The way we define a problem sets up a class of solutions as a restricted range of ways that things can be done. Historians and philosophers of science have shown that, contrary to the way we usually think of things, solutions come first. As the old expression goes, “When the only tool you have is a hammer, everything looks like a nail.” Science is so dependent on the available technology for the way it defines problems that this point has led to the emergence of the term “technoscience” as an explicit marker of the difference between this new point of view and the old one (among many works in this area, see Ihde, 1983; Latour, 1987).
  • One of the most ancient human technologies is language itself; the word “text” has the same root in the Sanskrit TEK and Greek techne as technique and textile. Just as is the case with technoscience, before we have the  slightest chance to do anything about it, language prethinks the world for us. In the same way that the Grateful Dead sings about the music playing the band, the words and grammar we use are using us much more than vice versa. We have rightly become more sensitive to the way words restrict our expectations, so that “man” is no longer taken to refer to all people. But the problem is far more complex than this example might lead us to believe. The very way in which words represent things is itself the paradigmatic model for science, as becomes apparent as we think this through.
  • One very important way that language sets us up to think in a particular way stems from the subject-verb-object structure of Western European languages. We habitually define problems in terms of what is sometimes called the Cartesian duality or subject-object split. Our language has led to the perception that thinking subjects are completely separate from and independent of the objects they encounter and act on. The limited framework in which this split can be reasonably entertained has been enormously productive, but has led to equally enormous undesired consequences in terms of human, social, and environmental waste.
  • Descartes himself recognized the limits of separating the thinking subject from the world of objects, but took a pragmatic attitude toward simplifying things. If Descartes hadn’t existed, we would have had to invent him, and to some extent, we probably already have. Descartes (1971, pp. 183-4) understood the situation very well, saying: “I have often observed that philosophers make the mistake of trying to explain by logical definitions those things which are most simple and self-evident; they thus only make them more obscure. When I said that the proposition I experience (cogito) therefore I am is the first and most certain of those we come across when we philosophize in an orderly way, I was not denying that we must first know what is meant by experience, existence, certainty; again, we must know such things as that it is impossible for that which is experiencing to be non-existent; but I thought it needless to enumerate these notions, for they are of the greatest simplicity, and by themselves they can give us no knowledge that anything exists.”
  • Descartes then did not use the phrase ‘cogito, ergo sum’ in the rigid and over-simplified way which is often attributed to him.  Heidegger (1967, p. 104) explains that
    “The formula which the proposition sometimes has, ‘cogito, ergo sum,’ suggests the misunderstanding that it is here a question of inference.  That is not the case and cannot be so, because this conclusion would have to have as its major premise: Id quod cogitat, est; and the minor premise: cogito; conclusion: ergo sum.  However, the major premise would only be a formal generalization of what lies in the proposition: ‘cogito-sum.’ Descartes himself emphasizes that no inference is present.  The sum is not a consequence of the thinking, but vice versa; it is the ground of thinking, the fundamentum.”
  • Today, though, the matters that were too simple for Descartes to concern himself with have become problems of huge proportion.  In a note to Heidegger’s discussion of this passage from Descartes, the editor suggests that the greatest part of Heidegger’s philosophical work has been devoted to enumerating and putting on record what Descartes left out as too simple to be concerned with (Krell in Heidegger 1982b, p. 125).
  • No doubt a great many thinkers and scholars have an intellectual grasp of these issues. Putting those thoughts in action is proving difficult, to say the least. Institutionalized habits of mind seem nearly impossible to overcome. In one of those great ironies of history, we now have a situation in which we are trying to solve a new class of problems (nonCartesian ones) using the approaches that are the cause of the class of problems (Cartesian ones). Of course, as long we insist on operating this way, all we can do is make things worse. (For more on this, see a previous blog describing how the problem is the problem.)
  • We can see our way out of this, and moreover find the motivation to act, by considering how we got into it. Descartes (1961, p. 8) held that “…in seeking the correct path to truth we should be concerned with nothing about which we cannot have a certainty equal to that of the demonstrations of arithmetic and geometry.” In saying this, Descartes identifies himself as a student of Plato, as someone experienced enough in mathematics to have met the requirements for admission to the Academy. Plato wanted students familiar with arithmetic and geometry because they know that numeric and geometric figures plainly are not the mathematical objects they stand for. Geometrical analyses of squares, circles, and triangles always come out the same, no matter which particular figure of a type is involved. Understanding this distinction was fundamental to taking up the study of philosophy, which actually involves nothing but the independence of figure from meaning, of word from concept. The Cartesian duality is a natural extension of Plato into the distinction between mind and body, subject and object.
  • So we look right through the particular words, numbers, and geometrical figures representing things and see the things themselves in terms of abstract ideals that are basically mathematical. But even in naming abstract ideals as such we do not come any closer to grasping or apprehending the complete truth of being. All we have are words, but this does not mean that we are trapped forever in a linguistic cage. The situation is quite the contrary, in fact. Science is poetry in motion. Science is a systematic way of simultaneously inventing and discovering things brought into words via dialogues with life. Science is the way we let the metaphoric process do its thing (among many works in this area, see especially Gerhart & Russell, 1984, and Kuhn, 1993; for an example of recent work, see Colburn & Shute, 2008).
  • Far from controlling and dominating the world, what science enables us to do via metaphor is to subject ourselves systematically to very specific aspects of the world.  Our problem today is not one of overcoming the way we have subdued nature, each other, and ourselves so much as it is one of subjecting ourselves to a more comprehensive range of things about which we can “have a certainty equal to that of the demonstrations of arithmetic and geometry,” as Descartes put it. In other words, how do we extend the power of nonCartesian scientific metaphor-making into the human, social, and environmental sciences? This project has been the focus of my work from the beginning of my professional career to the present, and is elaborated in detail in a number of works (Fisher, 1988, 1992, 2004, 2010b).
  • Though explanations and logic can be compelling to some readers, the real power of ideas is exhibited in practice. Living the change we want to see happen has, for me, involved acting on yet another aspect of the way science poetically extends language’s prethinking of the world. The identity and coherence of a culture or an historical epoch is largely a matter of the way particular metaphors inform a worldview and the paradigmatic objects of the conversations of the time. Individual thoughts and behaviors are coordinated and harmonized via conversations that take place in terms, of course, of the words and concepts in circulation. And so we see that language is the original network that makes collective cognition and action possible. Language is the model for the not-always-so-wise wisdom of crowds effect that synchronizes everything from markets to laboratories to rush hours.
  • Seen from this angle, then, the problem is one of seeing how mathematical clarity can be embodied in the instruments of a technoscience distributed across the nodes of networks. How can we think and act together on the problems of the human, social, and environmental sciences with the same kind of coordination we experience in time via clocks or in the sequencing of the SARS virus via laboratories sharing metrological standards (to cite an example given by Surowiecki (2004), with (Latour, 1987, 2005) in the background)? The answer to this question lies in the calibration of instruments that are linked together and are so traceable to reference standards in a kind of metric system for each major construct of interest, such as the abilities, health, attitudes, trust, and environmental qualities essential to human, social, and natural capital (Fisher, 1996, 2000a, 2000b, 2002, 2005, 2009a, 2009b, 2010a).
  • Instruments are being calibrated on a broad scale across a great many applied and research contexts in business and academic contexts (among thousands of publications, see Bezruczko, 2005; Drehmer, Belohlav, & Coye, 2000; Masters, 2007; Salzberger & Sinkovics, 2006). Though local or proprietary implementations work to coordinate thought and behavior within restricted communities, systematic approaches to creating universally uniform metric systems for human, social, and natural capital are as yet nonexistent (Fisher, 2009a, 2009b).
  • Finally, in accord with our acceptance of the way we are always already caught up in the play and flow of language, what does a nonCartesian approach to facilitating networked harmonizations look like? There are four main features to be aware of. First off, we want to be acutely aware of and vigilantly sensitive to the role of metaphor. In abstracting from individuals to universals, we generalize from particulars in ways that must be justified (Ballard, 1978, pp. 186-190; Ricoeur, 1974; Gadamer, 1991, pp. 7-8).  All generalization involves telling a story that is largely true of everyone and everything that has a part in it, but which simultaneously is not perfectly or exactly true of any of them. As Rasch (1960, p. 115) points out, if force, mass, and acceleration are measured with enough precision we see that the actual measures do not accord exactly with Newton’s laws; rather, their parameters in probability distributions do. Respect and attention to the potential for what Ricoeur (1974) called the violence of the premature conclusion must be brought to bear in systematic ways to aid in “recalling the uniqueness of the person measured” (Ballard, 1978, p. 189). It will be essential to incorporate the ontological method’s (Fisher, 2010b; Heidegger, 1982a, pp. 21-23, 32-330) deconstructive moment as a judicial element in a balance of powers with the legislative moment’s experimentally justified reductions and the executive moment’s constructive applications.
  • Second, attuned to those instances in which the philosophical thesis of the independence of figure and meaning, or the separation of signifier and signified, is difficult to satisfy (Derrida, 1982, p. 229; Wood & Bernasconi, 1988, 88-89), a nonCartesian approach to facilitating network harmonizations requires that we focus on identifying where, when, and what signifier-signified separations can be obtained. Because the universality and objectivity of mathematical objects make them “the absolute model for any object whatsoever” (Derrida, 1989, p. 66, also see p. 27), and because it is number and not word that is the real paradigm of the domain of things that can be understood in language (Gadamer, 1989, p. 412), we now strive to test the limits of the mathematical as “the fundamental presupposition of all ‘academic’ work” and “of the knowledge of things” (Heidegger, 1967, pp. 75-76).  This is the same thing as attending to the calibration of the instruments that are ultimately to be linked to reference standards. This is the domain of Rasch measurement (Andrich, 1988, 2004; Bond & Fox, 2007; Rasch, 1960; Wilson, 2005; Wright, 1997), which takes the assessment of data consistency, unidimensionality, reliability, and construct validity as essential.
  • Third, with calibrated instruments in hand, attention turns to linking and equating them systematically in networks tracing connections to and from metrological reference standards, adapting the methods for maintaining the existing metric system (Fisher, 1996, 2000a, 2000b, 2005, 2009a, 2009b, 2010a). The goal here will be one of coordinating and synchronizing the self-organizing structures of each distinct construct, much as was done for the measurement of literacy (Stenner, et al., 2006).
  • Fourth, though we have to this point completely respected our inescapable immersion in the play of language, there still remains the question of how such a massive transformation from the modern Cartesian dualist point of view to a postmodern nonCartesian one will be brought about. Like any paradigm shift, the new way of doing things emerges as a function of the returns–economic, political, social, and psychological–that can be expected from the investments made. And in accord with the broad qualitative sense of the mathematical as learning through what we already know (Heidegger, 1967; Kisiel, 1973), the new will emerge as an amplification of something old. A great deal of attention and investment is currently being focused on creating whole new sources of sustainable, socially responsible, and long-term profits from closer management of human, social, and natural capital. In the same way that the metric system is an essential component of global trade, and in the same way that origins of the metric system coincide with the scientific, industrial, and political revolutions of the late 18th and early 19th centuries, so, too, will a new metric system for human, social, and natural capital provide a foundation for new efficiencies and degrees of effectiveness across multiple domains. The profit motive is an engine of great energy and resources. We need to learn how to harness it as a driver of growth in realized human potential, social cohesion, and environmental quality. What other way of giving ourselves over to the nonCartesian and playful creation of meaning is there, in fact, except to extend the rule of law and the invisible hand’s matching of supply and demand into all of the areas essential to human being?

Philosophically speaking, then, it would seem that all of the elements are in place for a positive answer to Zimmerman’s (1990, p. 274) question, “can we develop the non-absolutist, non-foundational categories necessary to assess, to confront, and to transform the technological and economic mobilization of humanity and the earth at the beginning of the twenty-first century?” Zimmerman might not agree with my sense that we can, since, reflecting on Heidegger’s efforts to put his political philosophy in action, he (1990, p. 257) remarks that “Heidegger’s political engagement in 1933-34 led him to conclude that all merely human ‘revolutions’ and ‘decisions’ would simply reinforce the system already in play. The question for us is: Is that conclusion tenable?” Zimmerman (pp. 245-246) apparently hopes it is not, and looks to love, compassion, and respect as alternatives to Heidegger’s hope for divine intervention.

But let’s consider what is “merely human.” The nonhuman is not necessarily divine, even if that is what Heidegger might have meant. And has not Heidegger (1962) himself already identified care as the defining characteristic of human being, with Habermas (1995) underscoring “considerateness” for our shared vulnerability, Ricoeur (1974) focusing on the desire for meaning and the choice in favor of discourse over violence, and Gadamer (1991, p. 61) also holding that “the first concern of all dialogical and dialectical inquiry is a care for the unity and sameness of the thing under discussion”? Beyond these are shifts of focus away from death as our common end, and toward our common birth from women as our shared beginning (Fielding, 2003; Schues, 1997; Schutz, 1962, 1966; Tymieniecka 1998, 2000; Zaner, 2002). And even in this, we must inevitably draw from Plato, now in Socrates’ stress on his role as a midwife of ideas, and from Aristotle, who provides the model for how to take possession of the value of living meaning in theory (Gadamer, 1980, p. 200).

Further, the conception, gestation, midwifery, and nurturing of ideas that takes place via considerateness and the desire for meaning were never the product of “merely human” intentions or designs, any more than biological reproduction was. Rather, we submit to the demands of the ways meaning is created to the same extent that we submit to the ways that life is recreated; in both cases, there is such Hegelian joy in the ways we find ourselves in each other that we can hardly complain (though whole cultures have figured out ways of doing so).

And we can indeed fault Heidegger, as Zimmerman (1990, p. 244, 258) does, for having “refused to take seriously the organic dimension of human existence,” and for somehow managing “to ignore the concrete history of actual existence and actual inquiry.”  We arrive at an entirely different, democratic, sphere of political implications (Ihde, 1990; Latour, 2004; Latour & Weibel, 2005), when we extend the deconstruction of metaphysics into examinations of the actual material practices of science, as Latour (1987, 2005) and others have done (Ihde, 1991, 1998; Ihde & Selinger, 2003). The dialogue with nonhuman others (Latour, 1994) is conceived as explicitly nonCartesian and nondualist, such that it is literally impossible to conceive of anything that does not incorporate social relations, or of any social relations that do not incorporate nonhuman others.

The self-organized unfolding of such dialogues play out the self-representative activity of the things themselves, with method defined as their movement in thought (Gadamer, 1989; Fisher, 2004). Reinforcing some aspect or aspects of the system already in play is indeed inevitable, as Heidegger concluded. But no important “revolutions” or “decisions” have ever been based in “merely human” inputs (Latour, 1993), as becomes apparent if we pay close attention to the concrete behaviors and communications through which meaning is created and shared. The “non-absolutist, non-foundational categories necessary to assess, to confront, and to transform the technological and economic mobilization of humanity and the earth at the beginning of the twenty-first century” referred to by Zimmerman are indeed in hand. Though many unfamiliar with the evidence, theory, and instruments may doubt this is true, a contemporary Galileo might be heard to mutter, “E pur si muove!”


Andrich, D. (1988). Rasch models for measurement. (Vols. series no. 07-068, Sage University Paper Series on Quantitative Applications in the Social Sciences). Beverly Hills, California: Sage Publications.

Andrich, D. (2004, January). Controversy and the Rasch model: A characteristic of incompatible paradigms? Medical Care, 42(1), I-7–I-16.

Ballard, E. G. (1978). Man and technology: Toward the measurement of a culture. Pittsburgh, Pennsylvania: Duquesne University Press.

Bezruczko, N. (Ed.). (2005). Rasch measurement in health sciences. Maple Grove, MN: JAM Press.

Bond, T., & Fox, C. (2007). Applying the Rasch model: Fundamental measurement in the human sciences, 2d edition. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Colburn, T. R., & Shute, G. M. (2008, December). Metaphor in computer science. Journal of Applied Logic, 6(4), 526-533.

Derrida, J. (1982). Margins of philosophy. Chicago, Illinois: University of Chicago Press.

Derrida, J. (1989). Edmund Husserl’s Origin of Geometry: An introduction. Lincoln: University of Nebraska Press.

Descartes, R. (1961). Rules for the direction of the mind. Indianapolis: Bobbs-Merrill.

Descartes, R. (1971). Philosophical writings (E. Anscombe & P. T. Geach, Eds.). Indianapolis, Indiana: Bobbs-Merrill.

Drehmer, D. E., Belohlav, J. A., & Coye, R. W. (2000, Dec). A exploration of employee participation using a scaling approach. Group & Organization Management, 25(4), 397-418.

Fielding, H. (2003, March). Questioning nature: Irigaray, Heidegger and the potentiality of matter. Continental Philosophy Review, 36(1), 1-26.

Fisher, W. P., Jr. (1988). Truth, method, and measurement: The hermeneutic of instrumentation and the Rasch model [Diss]. Dissertation Abstracts International (University of Chicago, Dept. of Education, Division of the Social Sciences), 49, 0778A.

Fisher, W. P., Jr. (1992). Objectivity in measurement: A philosophical history of Rasch’s separability theorem. In M. Wilson (Ed.), Objective measurement: Theory into practice. Vol. I (pp. 29-58). Norwood, New Jersey: Ablex Publishing Corporation.

Fisher, W. P., Jr. (1996, Winter). The Rasch alternative. Rasch Measurement Transactions, 9(4), 466-467 [].

Fisher, W. P., Jr. (2000a). Objectivity in psychosocial measurement: What, why, how. Journal of Outcome Measurement, 4(2), 527-563 [].

Fisher, W. P., Jr. (2000b). Rasch measurement as the definition of scientific agency. Rasch Measurement Transactions, 14(3), 761 [].

Fisher, W. P., Jr. (2002, Spring). “The Mystery of Capital” and the human sciences. Rasch Measurement Transactions, 15(4), 854 [].

Fisher, W. P., Jr. (2004, October). Meaning and method in the social sciences. Human Studies: A Journal for Philosophy and the Social Sciences, 27(4), 429-54.

Fisher, W. P., Jr. (2005). Daredevil barnstorming to the tipping point: New aspirations for the human sciences. Journal of Applied Measurement, 6(3), 173-9 [].

Fisher, W. P., Jr. (2009a, November). Invariance and traceability for measures of human, social, and natural capital: Theory and application. Measurement (Elsevier), 42(9), 1278-1287.

Fisher, W. P. Jr. (2009b). NIST Critical national need idea White Paper: metrological infrastructure for human, social, and natural capital (Tech. Rep. No. New Orleans:

Fisher, W. P., Jr. (2010a). Bringing human, social, and natural capital to life: Practical consequences and opportunities. Journal of Applied Measurement, 11, in press [].

Fisher, W. P., Jr. (2010b). Reducible or irreducible? Mathematical reasoning and the ontological method. Journal of Applied Measurement, 11, in press.

Gadamer, H.-G. (1980). Dialogue and dialectic: Eight hermeneutical studies on Plato (P. C. Smith, Trans.). New Haven: Yale University Press.

Gadamer, H.-G. (1989). Truth and method (J. Weinsheimer & D. G. Marshall, Trans.) (Rev. ed.). New York: Crossroad.

Gadamer, H.-G. (1991). Plato’s dialectical ethics: Phenomenological interpretations relating to the Philebus (R. M. Wallace, Trans.). New Haven, Connecticut: Yale University Press.

Gerhart, M., & Russell, A. (1984). Metaphoric process: The creation of scientific and religious understanding [Foreword by Paul Ricoeur]. Fort Worth, Texas: Texas Christian University Press.

Habermas, J. (1995). Moral consciousness and communicative action. Cambridge, Massachusetts: MIT Press.

Heidegger, M. (1962). Being and time (J. Macquarrie & E. Robinson, Trans.). New York: Harper & Row.

Heidegger, M. (1967). What is a thing? (W. B. Barton, Jr. & V. Deutsch, Trans.). South Bend, Indiana: Regnery/Gateway.

Heidegger, M. (1982a). The basic problems of phenomenology (J. M. Edie, Ed.) (A. Hofstadter, Trans.). Studies in Phenomenology and Existential Philosophy. Bloomington, Indiana: Indiana University Press (Original work published 1975).

Heidegger, M. (1982b). Nietzsche, Vol. 4: Nihilism (D. F. Krell, Ed.) (F. A. Capuzzi, Trans.). San Francisco: Harper & Row.

Ihde, D. (1983). The historical and ontological priority of technology over science. In D. Ihde, Existential technics (pp. 25-46). Albany, New York: State University of New York Press.

Ihde, D. (1990). Technology and the lifeworld: From garden to earth. Bloomington, Indiana: Indiana University Press.

Ihde, D. (1991). Instrumental realism: The interface between philosophy of science and philosophy of technology. The Indiana Series in the Philosophy of Technology). Bloomington, Indiana: Indiana University Press.

Ihde, D. (1998). Expanding hermeneutics: Visualism in science. (Northwestern University Studies in Phenomenology and Existential Philosophy). Evanston, Illinois: Northwestern University Press.

Ihde, D., & Selinger, E. (Eds.). (2003). Chasing technoscience: Matrix for materiality. Indiana Series in Philosophy of Technology). Bloomington, Indiana: Indiana University Press.

Kisiel, T. (1973). The mathematical and the hermeneutical: On Heidegger’s notion of the apriori. In E. G. Ballard & C. E. Scott (Eds.), Martin Heidegger: In Europe and America (pp. 109-20). The Hague: Martinus Nijhoff.

Kuhn, T. S. (1993). Metaphor in science. In A. Ortony (Ed.), Metaphor and thought (2nd Ed.) (pp. 533-42). Cambridge: Cambridge University Press.

Latour, B. (1987). Science in action: How to follow scientists and engineers through society. New York: Cambridge University Press.

Latour, B. (1993). We have never been modern. Cambridge, Massachusetts: Harvard University Press.

Latour, B. (1994, May). Pragmatogonies: A mythical account of how humans and nonhumans swap properties. American Behavioral Scientist, 37(6), 791-808.

Latour, B. (2004). Politics of nature: How to bring the sciences into democracy. Cambridge, Massachusetts: Harvard University Press.

Latour, B. (2005). Reassembling the social: An introduction to Actor-Network-Theory. Clarendon Lectures in Management Studies). Oxford, England: Oxford University Press.

Latour, B., & Weibel, P. (2005). Making things public: Atmospheres of democracy. Cambridge, MA: MIT Press.

Masters, G. N. (2007). Special issue: Programme for International Student Assessment (PISA). Journal of Applied Measurement, 8(3), 235-335.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests (Reprint, with Foreword and Afterword by B. D. Wright, Chicago: University of Chicago Press, 1980). Copenhagen, Denmark: Danmarks Paedogogiske Institut.

Ricoeur, P. (1974). Violence and language. In D. Stewart & J. Bien (Eds.), Political and social essays by Paul Ricoeur (pp. 88-101). Athens, Ohio: Ohio University Press.

Salzberger, T., & Sinkovics, R. R. (2006). Reconsidering the problem of data equivalence in international marketing research: Contrasting approaches based on CFA and the Rasch model for measurement. International Marketing Review, 23(4), 390-417.

Schues, C. (1997). The birth of difference. Human Studies, 20(2), 243-52.

Schutz, A. (1962). Scheler’s theory of intersubjectivity and the general thesis of the alter ego. In Collected Papers of Alfred Schutz, Volume I. The Hague, The Netherlands: Martinus Nijhoff.

Schutz, A. (1966). The problem of transcendental intersubjectivity in Husserl. In Collected Papers of Alfred Schutz, Volume III. The Hague, The Netherlands: Martinus Nijhoff.

Stenner, A. J., Burdick, H., Sanford, E. E., & Burdick, D. S. (2006). How accurate are Lexile text measures? Journal of Applied Measurement, 7(3), 307-22.

Surowiecki, J. (2004). The wisdom of crowds: Why the many are smarter than the few and how collective wisdom shapes business, economies, societies and nations. New York: Doubleday.

Tymieniecka, A.-T. (1998). The ontopoesis of life as a new philosophical paradigm. Phenomenological Inquiry, 22, 12-59.

Tymieniecka, A.-T. (2000). Origins of life and the new critique of reason. Analecta Husserliana, 66, 3-16.

Wilson, M. (2005). Constructing measures: An item response modeling approach. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Wood, D., & Bernasconi, R. (1988). Derrida and différance. Evanston, Illinois: Northwestern University Press.

Wright, B. D. (1997, Winter). A history of social science measurement. Educational Measurement: Issues and Practice, 16(4), 33-45, 52 [].

Zaner, R. M. (2002). Making music together while growing older: Further reflections on intersubjectivity. Human Studies, 25, 1-18.

Zimmerman, M. E. (1990). Heidegger’s confrontation with modernity: Technology, politics, art. Bloomington, Indiana: Indiana University Press.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at
Permissions beyond the scope of this license may be available at

s becomes apparent