A Second Simple Example of Measurement’s Role in Reducing Transaction Costs, Enhancing Market Efficiency, and Enables the Pricing of Intangible Assets

The prior post here showed why we should not confuse counts of things with measures of amounts, though counts are the natural starting place to begin constructing measures. That first simple example focused on an analogy between counting oranges and measuring the weight of oranges, versus counting correct answers on tests and measuring amounts of ability. This second example extends the first by, in effect, showing what happens when we want to aggregate value not just across different counts of some one thing but across different counts of different things. The point will be, in effect, to show how the relative values of apples, oranges, grapes, and bananas can be put into a common frame of reference and compared in a practical and convenient way.

For instance, you may go into a grocery store to buy raspberries and blackberries, and I go in to buy cantaloupe and watermelon. Your cost per individual fruit will be very low, and mine will be very high, but neither of us will find this annoying, confusing, or inconvenient because your fruits are very small, and mine, very large. Conversely, your cost per kilogram will be much higher than mine, but this won’t cause either of us any distress because we both recognize the differences in the labor, handling, nutritional, and culinary value of our purchases.

But what happens when we try to purchase something as complex as a unit of socioeconomic development? The eight UN Millennium Development Goals (MDGs) represent a start at a systematic effort to bring human, social, and natural capital together into the same economic and accountability framework as liquid and manufactured capital, and property. But that effort is stymied by the inefficiency and cost of making and using measures of the goals achieved. The existing MDG databases (http://data.un.org/Browse.aspx?d=MDG), and summary reports present overwhelming numbers of numbers. Individual indicators are presented for each year, each country, each region, and each program, goal by goal, target by target, indicator by indicator, and series by series, in an indigestible volume of data.

Though there are no doubt complex mathematical methods by which a philanthropic, governmental, or NGO investor might determine how much development is gained per million dollars invested, the cost of obtaining impact measures is so high that most funding decisions are made with little information concerning expected returns (Goldberg, 2009). Further, the percentages of various needs met by leading social enterprises typically range from 0.07% to 3.30%, and needs are growing, not diminishing. Progress at current rates means that it would take thousands of years to solve today’s problems of human suffering, social disparity, and environmental quality. The inefficiency of human, social, and natural capital markets is so overwhelming that there is little hope for significant improvements without the introduction of fundamental infrastructural supports, such as an Intangible Assets Metric System.

A basic question that needs to be asked of the MDG system is, how can anyone make any sense out of so much data? Most of the indicators are evaluated in terms of counts of the number of times something happens, the number of people affected, or the number of things observed to be present. These counts are usually then divided by the maximum possible (the count of the total population) and are expressed as percentages or rates.

As previously explained in various posts in this blog, counts and percentages are not measures in any meaningful sense. They are notoriously difficult to interpret, since the quantitative meaning of any given unit difference varies depending on the size of what is counted, or where the percentage falls in the 0-100 continuum. And because counts and percentages are interpreted one at a time, it is very difficult to know if and when any number included in the sheer mass of data is reasonable, all else considered, or if it is inconsistent with other available facts.

A study of the MDG data must focus on these three potential areas of data quality improvement: consistency evaluation, volume reduction, and interpretability. Each builds on the others. With consistent data lending themselves to summarization in sufficient statistics, data volume can be drastically reduced with no loss of information (Andersen, 1977, 1999; Wright, 1977, 1997), data quality can be readily assessed in terms of sufficiency violations (Smith, 2000; Smith & Plackner, 2009), and quantitative measures can be made interpretable in terms of a calibrated ruler’s repeatedly reproducible hierarchy of indicators (Bond & Fox, 2007; Masters, Lokan, & Doig, 1994).

The primary data quality criteria are qualitative relevance and meaningfulness, on the one hand, and mathematical rigor, on the other. The point here is one of following through on the maxim that we manage what we measure, with the goal of measuring in such a way that management is better focused on the program mission and not distracted by accounting irrelevancies.

Method

As written and deployed, each of the MDG indicators has the face and content validity of providing information on each respective substantive area of interest. But, as has been the focus of repeated emphases in this blog, counting something is not the same thing as measuring it.

Counts or rates of literacy or unemployment are not, in and of themselves, measures of development. Their capacity to serve as contributing indications of developmental progress is an empirical question that must be evaluated experimentally against the observable evidence. The measurement of progress toward an overarching developmental goal requires inferences made from a conceptual order of magnitude above and beyond that provided in the individual indicators. The calibration of an instrument for assessing progress toward the realization of the Millennium Development Goals requires, first, a reorganization of the existing data, and then an analysis that tests explicitly the relevant hypotheses as to the potential for quantification, before inferences supporting the comparison of measures can be scientifically supported.

A subset of the MDG data was selected from the MDG database available at http://data.un.org/Browse.aspx?d=MDG, recoded, and analyzed using Winsteps (Linacre, 2011). At least one indicator was selected from each of the eight goals, with 22 in total. All available data from these 22 indicators were recorded for each of 64 countries.

The reorganization of the data is nothing but a way of making the interpretation of the percentages explicit. The meaning of any one country’s percentage or rate of youth unemployment, cell phone users, or literacy has to be kept in context relative to expectations formed from other countries’ experiences. It would be nonsense to interpret any single indicator as good or bad in isolation. Sometimes 30% represents an excellent state of affairs, other times, a terrible one.

Therefore, the distributions of each indicator’s percentages across the 64 countries were divided into ranges and converted to ratings. A lower rating uniformly indicates a status further away from the goal than a higher rating. The ratings were devised by dividing the frequency distribution of each indicator roughly into thirds.

For instance, the youth unemployment rate was found to vary such that the countries furthest from the desired goal had rates of 25% and more(rated 1), and those closest to or exceeding the goal had rates of 0-10% (rated 3), leaving the middle range (10-25%) rated 2. In contrast, percentages of the population that are undernourished were rated 1 for 35% or more, 2 for 15-35%, and 3 for less than 15%.

Thirds of the distributions were decided upon only on the basis of the investigator’s prior experience with data of this kind. A more thorough approach to the data would begin from a finer-grained rating system, like that structuring the MDG table at http://mdgs.un.org/unsd/mdg/Resources/Static/Products/Progress2008/MDG_Report_2008_Progress_Chart_En.pdf. This greater detail would be sought in order to determine empirically just how many distinctions each indicator can support and contribute to the overall measurement system.

Sixty-four of the available 336 data points were selected for their representativeness, with no duplications of values and with a proportionate distribution along the entire continuum of observed values.

Data from the same 64 countries and the same years were then sought for the subsequent indicators. It turned out that the years in which data were available varied across data sets. Data within one or two years of the target year were sometimes substituted for missing data.

The data were analyzed twice, first with each indicator allowed its own rating scale, parameterizing each of the category difficulties separately for each item, and then with the full rating scale model, as the results of the first analysis showed all indicators shared strong consistency in the rating structure.

Results

Data were 65.2% complete. Countries were assessed on an average of 14.3 of the 22 indicators, and each indicator was applied on average to 41.7 of the 64 country cases. Measurement reliability was .89-.90, depending on how measurement error is estimated. Cronbach’s alpha for the by-country scores was .94. Calibration reliability was .93-.95. The rating scale worked well (see Linacre, 2002, for criteria). The data fit the measurement model reasonably well, with satisfactory data consistency, meaning that the hypothesis of a measurable developmental construct was not falsified.

The main result for our purposes here concerns how satisfactory data consistency makes it possible to dramatically reduce data volume and improve data interpretability. The figure below illustrates how. What does it mean for data volume to be drastically reduced with no loss of information? Let’s see exactly how much the data volume is reduced for the ten item data subset shown in the figure below.

The horizontal continuum from -100 to 1300 in the figure is the metric, the ruler or yardstick. The number of countries at various locations along that ruler is shown across the bottom of the figure. The mean (M), first standard deviation (S), and second standard deviation (T) are shown beneath the numbers of countries. There are ten countries with a measure of just below 400, just to the left of the mean (M).

The MDG indicators are listed on the right of the figure, with the indicator most often found being achieved relative to the goals at the bottom, and the indicator least often being achieved at the top. The ratings in the middle of the figure increase from 1 to 3 left to right as the probability of goal achievement increases as the measures go from low to high. The position of the ratings in the middle of the figure shifts from left to right as one reads up the list of indicators because the difficulty of achieving the goals is increasing.

Because the ratings of the 64 countries relative to these ten goals are internally consistent, nothing but the developmental level of the country and the developmental challenge of the indicator affects the probability that a given rating will be attained. It is this relation that defines fit to a measurement model, the sufficiency of the summed ratings, and the interpretability of the scores. Given sufficient fit and consistency, any country’s measure implies a given rating on each of the ten indicators.

For instance, imagine a vertical line drawn through the figure at a measure of 500, just above the mean (M). This measure is interpreted relative to the places at which the vertical line crosses the ratings in each row associated with each of the ten items. A measure of 500 is read as implying, within a given range of error, uncertainty, or confidence, a rating of

  • 3 on debt service and female-to-male parity in literacy,
  • 2 or 3 on how much of the population is undernourished and how many children under five years of age are moderately or severely underweight,
  • 2 on infant mortality, the percent of the population aged 15 to 49 with HIV, and the youth unemployment rate,
  • 1 or 2 the poor’s share of the national income, and
  • 1 on CO2 emissions and the rate of personal computers per 100 inhabitants.

For any one country with a measure of 500 on this scale, ten percentages or rates that appear completely incommensurable and incomparable are found to contribute consistently to a single valued function, developmental goal achievement. Instead of managing each separate indicator as a universe unto itself, this scale makes it possible to manage development itself at its own level of complexity. This ten-to-one ratio of reduced data volume is more than doubled when the total of 22 items included in the scale is taken into account.

This reduction is conceptually and practically important because it focuses attention on the actual object of management, development. When the individual indicators are the focus of attention, the forest is lost for the trees. Those who disparage the validity of the maxim, you manage what you measure, are often discouraged by the the feeling of being pulled in too many directions at once. But a measure of the HIV infection rate is not in itself a measure of anything but the HIV infection rate. Interpreting it in terms of broader developmental goals requires evidence that it in fact takes a place in that larger context.

And once a connection with that larger context is established, the consistency of individual data points remains a matter of interest. As the world turns, the order of things may change, but, more likely, data entry errors, temporary data blips, and other factors will alter data quality. Such changes cannot be detected outside of the context defined by an explicit interpretive framework that requires consistent observations.

-100  100     300     500     700     900    1100    1300
|-------+-------+-------+-------+-------+-------+-------|  NUM   INDCTR
1                                 1  :    2    :  3     3    9  PcsPer100
1                         1   :   2    :   3            3    8  CO2Emissions
1                    1  :    2    :   3                 3   10  PoorShareNatInc
1                 1  :    2    :  3                     3   19  YouthUnempRatMF
1              1   :    2   :   3                       3    1  %HIV15-49
1            1   :   2    :   3                         3    7  InfantMortality
1          1  :    2    :  3                            3    4  ChildrenUnder5ModSevUndWgt
1         1   :    2    :  3                            3   12  PopUndernourished
1    1   :    2   :   3                                 3    6  F2MParityLit
1   :    2    :  3                                      3    5  DebtServExpInc
|-------+-------+-------+-------+-------+-------+-------|  NUM   INDCTR
-100  100     300     500     700     900    1100    1300
                   1
       1   1 13445403312323 41 221    2   1   1            COUNTRIES
       T      S       M      S       T

Discussion

A key element in the results obtained here concerns the fact that the data were about 35% missing. Whether or not any given indicator was actually rated for any given country, the measure can still be interpreted as implying the expected rating. This capacity to take missing data into account can be taken advantage of systematically by calibrating a large bank of indicators. With this in hand, it becomes possible to gather only the amount of data needed to make a specific determination, or to adaptively administer the indicators so as to obtain the lowest-error (most reliable) measure at the lowest cost (with the fewest indicators administered). Perhaps most importantly, different collections of indicators can then be equated to measure in the same unit, so that impacts may be compared more efficiently.

Instead of an international developmental aid market that is so inefficient as to preclude any expectation of measured returns on investment, setting up a calibrated bank of indicators to which all measures are traceable opens up numerous desirable possibilities. The cost of assessing and interpreting the data informing aid transactions could be reduced to negligible amounts, and the management of the processes and outcomes in which that aid is invested would be made much more efficient by reduced data volume and enhanced information content. Because capital would flow more efficiently to where supply is meeting demand, nonproducers would be cut out of the market, and the effectiveness of the aid provided would be multiplied many times over.

The capacity to harmonize counts of different but related events into a single measurement system presents the possibility that there may be a bright future for outcomes-based budgeting in education, health care, human resource management, environmental management, housing, corrections, social services, philanthropy, and international development. It may seem wildly unrealistic to imagine such a thing, but the return on the investment would be so monumental that not checking it out would be even crazier.

A full report on the MDG data, with the other references cited, is available on my SSRN page at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1739386.

Goldberg, S. H. (2009). Billions of drops in millions of buckets: Why philanthropy doesn’t advance social progress. New York: Wiley.

Creative Commons License
LivingCapitalMetrics Blog by William P. Fisher, Jr., Ph.D. is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States License.
Based on a work at livingcapitalmetrics.wordpress.com.
Permissions beyond the scope of this license may be available at http://www.livingcapitalmetrics.com.

Advertisements

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: